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Scale-invariant large nonlocality in polycrystalline
graphene
Mário Ribeiro1,6, Stephen R. Power 2,3, Stephan Roche2,4, Luis E. Hueso 1,5 & Fèlix Casanova 1,5

The observation of large nonlocal resistances near the Dirac point in graphene has been

related to a variety of intrinsic Hall effects, where the spin or valley degrees of freedom are

controlled by symmetry breaking mechanisms. Engineering strong spin or valley Hall signals

on scalable graphene devices could stimulate further practical developments of spin- and

valleytronics. Here we report on scale-invariant nonlocal transport in large-scale chemical

vapor deposition graphene under an applied external magnetic field. Contrary to previously

reported Zeeman spin Hall effect, our results are explained by field-induced spin-filtered edge

states whose sensitivity to grain boundaries manifests in the nonlocal resistance. This phe-

nomenon, related to the emergence of the quantum Hall regime, persists up to the millimeter

scale, showing that polycrystalline morphology can be imprinted in nonlocal transport. This

suggests that topological Hall effects in large-scale graphene materials are highly sensitive to

the underlying structural morphology, limiting practical realizations.
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In recent years, there has been a continuous effort to harvest
the spin and valley degrees of freedom of charge carriers for
developing innovative information processing as an alternative

to complementary metal-oxide-semiconductor technologies1–7.
The high-mobility, low spin−orbit coupling (SOC), and linear
energy dispersion of graphene has made it a core platform in such
quest. In this context, graphene has been explored in magnetic-
element-free nonlocal transport using Hall-bar geometries. The
large nonlocal signals are observed close to the Dirac point, and
have been tentatively related to topological Hall effects such as the
spin Hall effect (SHE)2,8–10, or long-range chargeless topological
valley Hall currents for gapped graphene/h-BN hetero-
structures11,12. Spin signals in graphene using nonlocal approa-
ches free of magnetic elements have been reported by applying
external magnetic fields3,13, by using extrinsic sources of SOC2,8–

10,14, and by proximity effect to ferromagnetic insulators15.
Theoretical predictions have mainly explored spin diffusion in the
spin Hall regime, where spin currents are respectively generated
and detected by means of the SHE and the inverse spin Hall effect
(ISHE)9,16–18. Nonlocal signatures related to valley Hall currents
have also been predicted to emerge from the different diffraction
features of the two valleys in graphene19. The theoretical frame-
works in the spin Hall regime consider extrinsic sources of SOC,
Zeeman interaction (Zeeman spin Hall effect), and proximity-
induced strong-exchange bias as possible mechanisms driving
such enhancements of nonlocal signals close to the Dirac
point18,20–23. More recently, spin generation and detection via
extrinsic sources of SOC have been questioned by Wang et al.24,
Kaverzin et al.25, and Cresti et al.26

All current demonstrations however rely on microscale Hall
bars of pristine graphene obtained from micromechanical exfo-
liation techniques, with natural flakes with dimensions ranging
several micrometers, or on microscale Hall bars patterned from
chemical vapor deposition (CVD) graphene2,3,8,10,13,15. The
micrometer spin and valley relaxation lengths therefore restrict
the experimental realizations to such scale. Core in the analysis of
nonlocal signals, these approaches rely on comparing the non-
local signal to the background arising from the classical current
spreading (Ohmic) contribution and studying its dependence
with the channel geometry to sustain the claim of other-than-
charge sources for the nonlocality.

Here, we demonstrate the persistence of large nonlocal signals
at the Dirac point of CVD graphene devices from the micrometer
up to the millimeter scale in presence of an external magnetic
field applied perpendicular to the surface. These signals exhibit a
similar dependence with the magnetic field to those induced via
Zeeman spin Hall effect3 in microscale high-quality pristine
graphene devices, and closely follow the same dependence with
the device aspect ratio for device lengths that differ by two orders
in magnitude. We however exclude an origin based on pure spin
and valley currents due to the length scales involved in the
transporting channel of the macroscale devices, and conclude that
the origin of the intriguing nonlocality for both the microscale
and macroscale stems from the same fundamental mechanism.
Considering the microscopic details of the fabricated samples and
the polycrystalline morphology of the CVD graphene samples,
the large nonlocal signals are consistent with a dissipative
quantum Hall regime driven by Zeeman-split counter-propagat-
ing edge states16,20,27,28. Additionally, the grain boundaries (GBs)
shunt the insulating bulk28–33 induced by the strong magnetic
field, and generate a strong asymmetry of the nonlocal magne-
toresistance with external magnetic field, a striking feature already
observed, but not yet understood3.

Results
Device fabrication and measurement configuration. The avail-
ability of mm-sized continuous CVD graphene films enables the
fabrication of Hall bars in a wide range of scales, and the study of
nonlocal signals for device geometries not achievable using
standard micromechanical exfoliation techniques34. The devices
studied in this work were fabricated following standard electron-
beam lithography procedures on monolayer CVD graphene films
wet-transferred onto 1×1 cm2 Si/SiO2(300 nm) substrates (see
Methods). Standard local electrical characterization was first
employed to ensure the quality of the metal contacts, and that the
graphene samples exhibited characteristic transport properties
unique to graphene, such as the half-integer quantum Hall
effect35 (see Supplementary Notes 1 and 2). Figure 1a shows a
sketch of a Hall bar depicting the measurement configuration of
the nonlocal transport, and the two sources of nonlocal signals
mainly discussed in this paper. Figure 1b shows an optical
microscope picture of the macroscale sample.
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Fig. 1 Device structure and nonlocal measurements. a Sketch of the Hall-bar-shaped channel for nonlocal measurements. The nonlocal measurement
consists of driving a current (black arrow) across contacts 1 and 2, and measuring the resulting voltage signal between probes 3 and 4. The nonlocal
resistance is defined as RNL = V34/I12. In the spin Hall regime, a spin current transverse to the injected charge current is generated via SHE (spin “down”,
blue arrow; spin “up”, red arrow), and diffuses through the channel of length L until it reaches electrodes 3 and 4, where via ISHE the spin current generates
a charge current. The black dashed lines represent the van der Pauw contribution to the nonlocal resistance detected between probes 3 and 4. This
background signal originates from the current spreading from terminals 1 and 2, and depends only on the resistivity of the conducting channel multiplied by
an exponential decaying geometrical factor. In our devices, the current is always injected in the left arm, and detected at the right arm, with the external
magnetic field applied perpendicular to the surface. b Optical microscope image of the macroscale CVD graphene sample. The channel width, W, is 500
μm, with the electrodes distance L being 500, 700, 900, 1200, and 1500 μm. The width of the contacts is defined to be 1/10th of the width of the channel.
White scale bar is 500 μm

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02346-x

2 NATURE COMMUNICATIONS | 8:  2198 |DOI: 10.1038/s41467-017-02346-x |www.nature.com/naturecommunications

www.nature.com/naturecommunications


In a concise manner, nonlocal measurements in the context of
spin Hall currents consist of driving a current in one arm of an
H-bar shaped channel and detecting the voltage drop at the other
arm (see Fig. 1a). Using the terminal notation shown in Fig. 1a,
the nonlocal resistance is determined as RNL = V34/I12. If the
channel length matches the spin diffusion length in the non-
magnetic material, this simple device scheme and measurement
setup makes possible the detection of spin-related signals in the
spin Hall regime. The Hall-bar geometry allows for the generation
of a transverse spin current from the charge current via SHE,
which will then diffuse across the channel and be converted back
into a charge current via ISHE. The magnitude of the effect will
depend on the efficiency of the spin-to-charge conversion, and on
the spin relaxation length. These two quantities can be
determined from a transmission line method measurement of
the nonlocal resistance16, where the nonlocal resistance is related
to the length, L, and width, W, of the transporting channel as

RNL ¼ 1
2 θ

2
SHρxx

W
λs
exp � L

λs

� �
, where θSH is the spin Hall angle, ρxx

the sheet resistance, and λs the spin diffusion length. In graphene,
RNL in the spin Hall regime is greatly enhanced at the Dirac point,
requiring the use of a gate voltage to sweep the Fermi level of
graphene to the charge neutrality point (CNP)2,3,8,10,13,15.

Although nonlocal measurements are used to probe non-
charge-related transport, there are classical, charge-related
sources of nonlocality that can contribute to the signal detected
between terminals 3 and 4 (see Fig. 1a). A robust source of
nonlocal signals is the classical van der Pauw current spreading
from the injecting terminals3,36,37. By injecting a current on the
left arm, a net current will reach the detection terminals, with
magnitude decreasing exponentially with the distance to the
injecting terminals. This Ohmic contribution in the device
scheme presented is determined using the formula

RNL;Ohmic ¼ ρxx
π ln cosh πL=Wð Þþ1

cosh πL=Wð Þ�1

h i
, which, for cases where L>W, is

usually approximated as RNL;Ohmic � 4
π ρxx exp �π L

W

� �
. The sheet

resistance is determined by performing a four-probe measure-
ment of the respective channel, injecting a current between
electrodes S and D, and measuring the voltage drop between
electrodes 2 and 4, or 1 and 3. By comparing the detected
nonlocal resistance vs. the expected nonlocal Ohmic contribution,
we can evaluate the emergence of signals not related to this
classical source.

In our study, the nonlocal resistance at the CNP of graphene is
measured for different applied magnetic fields (B), and then
compared to the Ohmic contribution evaluated under the same
conditions. Throughout the manuscript, we keep the same
relative orientation of the perpendicular B and of the arms
injecting the current and detecting the voltage signal. We
explored CVD graphene Hall bars with channel 5, 50, and 500
µm wide, with center-to-center distance between terminals
maintaining similar aspect ratios (L/W) of typically 1, 1.4, 1.8,
2.4, and 3.2. The width of the terminals is 1/10th or less of the
channel width (see Methods). We report mainly on the results
obtained for the extreme cases of 5 and 500-µm-wide samples,
using the data of the 50-µm-wide sample to extend the discussion.
Further details on the fabrication and electrical measurements are
provided in Methods.

Nonlocality in macroscale devices. Figure 2 shows the results
obtained for the 500-µm-wide macroscale CVD graphene sample,
for a channel length of 1500 μm, at cryogenic temperatures.

In Fig. 2a, a sweep of the gate voltage, VG, in the absence of
magnetic field reveals the carrier density dependence of graphene,
with CNP at VG = 34 V. The Ohmic background closely follows
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Fig. 2 Nonlocality in macroscale CVD graphene devices at low temperatures. a Nonlocal resistance as a function of back-gate voltage for a 500-μm-wide
and 1500-μm-long Hall bar. b Nonlocal resistance as a function of the applied out-of-plane magnetic field, at the CNP of graphene, for different
temperatures. c Transmission line plot of the nonlocal resistance with channel length, at the CNP. In all figures, dashed lines represent the determined
Ohmic contributions from four-probe measurements under equivalent conditions
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the nonlocal resistance and, at the CNP, matches the detected
nonlocal resistance. When B is applied, a significant increase of
RNL at the Dirac point occurs, together with a narrowing of the
curve (see Supplementary Note 3 for the temperature depen-
dence). This effect is not reproduced by the Ohmic contribution.
By fixing the gate voltage at the CNP and sweeping B (Fig. 2b),
one verifies two fundamental features. Firstly, the nonlocal
magnetoresistance is asymmetric, with significantly higher
nonlocal values for negative values of B. Secondly, for the side
with higher signals, the difference between the nonlocal resistance
and the Ohmic contribution increases with increasing B.
Furthermore, the Ohmic signal shows a more symmetric
magnetoresistance.

Expanding the study to the different channel lengths and
focusing on the side with highest nonlocal signal, Fig. 2c shows the
dependence of RNL and of the Ohmic contribution at 2 K as a
function of the channel length, at the CNP, with (B= −6 T) and
without (B= 0) applied magnetic field. Without magnetic field, the
expected Ohmic contribution and the measured RNL coincide,
following the same dependence with the channel length. Fitting the
dependence to an exponential decay, the resulting decay λ = 159.4
± 1.6 µm closely matches the expected W/π from the Ohmic term
exp �π L

W

� �
, calculated to be ~159.2 μm. Upon switching on the

magnetic field, RNL follows a similar exponential decay with
channel length, but the magnitude of the resistance is greatly
enhanced, in some cases being one order of magnitude higher than
the Ohmic signal for similar conditions. If the signal were to be
interpreted in terms of charge neutral spin currents, (or,
equivalently, valley currents), a fitting to the expression RNL ¼
1
2 θ

2
SHρxx

W
λs
exp � L

λs

� �
would yield a spin relaxation length of λs =

163± 19 μm and θSH = 1.6± 0.4. Such values are clearly unrea-
sonably high for such a disordered polycrystalline graphene sample

supported onto an oxide substrate. Actually, the spin Hall angle
determined is one order of magnitude higher than what is typical
of metals with strong SOC, such as platinum (θSH ~ 0.2)5,38.

Nonlocality in microscale devices. Figure 3a shows the nonlocal
resistance measured for the 5-μm-wide microscale CVD graphene
sample, for a channel length of 16 μm, at cryogenic temperatures.

Similarly to what was found before, in the absence of an
applied magnetic field (B = 0), and by sweeping the gate voltage,
RNL is well described by the Ohmic background, with a decay λ =
1.58± 0.03 µm. However, in this case, under an applied magnetic
field (B= 6 T), the enhancement of the nonlocal signal is one
order of magnitude higher than in the macroscale sample for an
equivalent aspect ratio, L/W = 3, with RNL two orders of
magnitude higher than the Ohmic background (see Supplemen-
tary Note 3 for the temperature dependence). Strikingly, fixing
the gate voltage at the CNP and sweeping B (Fig. 3b), the
magnetoresistance of the graphene becomes greatly asymmetric,
but this time the higher nonlocal values happen for positive
values of B. A strong asymmetry of the nonlocal resistance with B
was also reported in other studies of nonlocality, but such effects
were not analyzed3. Evaluating RNL at the CNP for the different
channel lengths at 2 K with (B = 6 T) and without (B = 0) applied
magnetic field, Fig. 3c exhibits a similar trend to that reported for
the macroscale sample, with a clear agreement between the
nonlocal resistance and the Ohmic contribution at B= 0,
following the same dependence with the channel length. In the
presence of B, the nonlocal resistance dependence is also clearly
described by a similar exponential decay with channel length, but
the magnitude of the signals is even further enhanced, from one
to two orders of magnitude larger than the expected Ohmic
background. An analysis in terms of non-charge currents yields
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Fig. 3 Nonlocality in microscale CVD graphene devices at low temperatures. a Nonlocal resistance as a function of back-gate voltage for a 5-μm-wide and
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λs = 2.7± 1.2 µm, and θSH = 1.3± 0.6. We note that this relaxation
length is similar to reports that place λs between 1 and 5 μm in
CVD graphene on SiO2

39.

Discussion
So far, we have demonstrated that CVD graphene samples that
differ in dimensions by two orders of magnitude can show similar
large nonlocal signals close to the Dirac point, which dominate
over the conventional Ohmic contribution. In the absence of
magnetic field, these samples exhibit nonlocal resistance in per-
fect agreement with what is expected from the van der Pauw
background. The source of the strong nonlocal signal when the
magnetic field is applied is less clear and more complex. In the
macroscale devices, an origin related to spin diffusion within the
spin Hall regime would require the spins generated in the
injecting terminal to survive a disordered 1.6-mm-long channel,
and convert back into a charge current, which disagrees with all
the estimations of spin diffusion lengths reported to date in CVD
graphene samples39. This strongly suggests that the signal visible
in the macroscale sample is not related to a pure spin transport
mechanism within an SHE and ISHE process. At the microscale
sample, the signal increases even further, by one order of mag-
nitude. Again, the dependence with channel length indicates that
the signal decays exponentially similarly to that predicted from
the Ohmic contribution of 1.59 μm.

Besides the origins related to spin transport and van der Pauw
backgrounds, thermoelectric effects have also been proposed as a
possible mechanism driving nonlocality at the CNP of graphene,
in particular the Ettingshausen−Nernst effect13,40. In this picture,
the nonlocal signal would be generated in two steps: first, under
an applied perpendicular magnetic field, the current being driven
would lead to a transverse heat flow (Ettingshausen effect); sec-
ond, the thermal gradient across the detection terminal under B
would generate the nonlocal voltage (Nernst effect). Since ther-
moelectric coefficients in graphene show a strong increase around
the Dirac point, the gate dependence should manifest an
enhancement at the CNP. But considering both Ettingshausen
and Nernst effects, the dependence of RNL with B should be
quadratic, RNL ∝ B2. This seems not to be the case in our samples,
neither in the microscale sample (Fig. 3b) nor in the macroscale
one (Fig. 2b), where the dependence of the nonlocal resistance
with magnetic field is strongly asymmetric.

From this discussion, the nonlocal signals in our experiment do
not seem to originate from spin or valley Hall effects, thermo-
electric effects, or purely Ohmic contributions. To further clarify
the nature of the observed features, we repeated the experiments
for a sample with dimensions in between 5 and 500 μm. With a 50-
μm-wide channel, and equivalent aspect ratios between 1 and 3.2,
the sample is on the macroscale side, and should exclude spin
transport. Figure 4a summarizes the nonlocal resistance at the CNP
of graphene taken at |B| = 6 T as a function of the channel aspect
ratio, for all three samples (5-, 50-, and 500-μm-wide channel).

The nonlocal resistance for the 50-μm-wide sample remains
between those obtained for the two other samples, with signals 1
−2 orders of magnitude higher than expected from the van der
Pauw background. Interestingly, the signal magnitude is similar
to the 5-μm-wide sample, where spin signals could conceivably
survive a 16-μm-long channel. In this case, with a 160-μm-long
channel, we exclude a spin transport origin. The mechanism
driving the nonlocal response must be able to generate signals
dependent with the magnitude and sign of the external magnetic
field, seemingly invariant with scale, and that follow a dependence
with channel length similar to the Ohmic background. To explain
all these anomalous features, we propose an interpretation based
on counter-propagating edge states shunted by GBs.

When an out-of-plane magnetic field is applied to graphene,
the bulk gradually becomes insulating, while charge current
increasingly flows at the edges, resulting in a well-defined quan-
tum Hall effect for large fields (see Supplementary Note 2). The
uniqueness of the electronic properties of graphene give rise to a
zeroth Landau level (LL0) at the CNP which is populated by both
electrons and holes34,35,41. The Zeeman splitting of the LL0
couples the charge carrier type to the spin state, so that electrons
and holes are now associated with opposite spin polarizations,
which triggers a dissipative quantum Hall effect near the CNP,
driven by spin-polarized counter-propagating edge states (as
shown in Fig. 4c)28,42. A key feature of this effect is that the
longitudinal resistivity ρxx at the CNP is now predominantly
driven by edge, and not bulk, channels28. Under these conditions,
and considering a four-point contact configuration similar to that
explored in our work, a nonlocal signal emerges at the CNP solely
driven by potential drops at the contacts (see Supplementary
Note 4 for a multi-terminal Landauer−Büttiker formulation of the
device detailing the origin of the nonlocality). A similar finger-
print (peak in RNL at the CNP) has already been found in a
nonlocal measurement on two-dimensional system with a
simultaneous presence of electrons and holes in a 20 nm HgTe
quantum well43.

In our experimental data, the presence of a strong asymmetric
behavior of RNL with the direction of B is a salient observation
that demands interpretation. The strong nonlocal signal can be
almost entirely quenched by changing the sign of B. The
quenching is consistent with bulk conduction, meaning that a

 

104a

b

c

103

102

101

100

10–1

1.0

R
N

L 
(Ω

)

1.5

–6 T, W = 500 μm
–6 T, W = 50 μm
6 T, W = 5 μm

2.0
L/W

2.5

Ohmic, 0 T

3.0

h+

e–

@ CNP
T = 2 K

3.5

Fig. 4 Origin of nonlocal resistance for the CVD graphene samples. a
Nonlocal resistance as a function of aspect ratio of the Hall bars for the 5-,
50-, and 500-μm-wide samples, at CNP and 2 K. b Optical image of the
microscale CVD graphene sample during the fabrication marking the visible
grain boundaries and bilayer islands. White scale bar is 5 μm. c At the CNP,
and under an external field, the counter-propagating edge currents are
coupled to the charge of the carrier via Zeeman interaction. The presence
of hole/electron asymmetric grain boundaries shunting the edge states
through the insulating bulk leads to nonlocal measurements that are
sensitive to the sample topology and sign of the magnetic field

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02346-x ARTICLE

NATURE COMMUNICATIONS |8:  2198 |DOI: 10.1038/s41467-017-02346-x |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


shunting of the edge currents that drive the nonlocal signal enter
into play. Indeed, previous studies associate conducting bulk
states with a decay of the ρxx peak away from the CNP28. In CVD
graphene, line defects (i.e., GBs) are the most likely source of this
conduction through the bulk, and as shown in Fig. 4b, our
nonlocal transport geometry intercepts many GBs along the
transport channel. Importantly, such defects can display strong
electron−hole asymmetry in their transmission properties due to
local sublattice symmetry breaking29–33,44,45 or by intercepting
electron−hole puddles across the device. This manifests as an
asymmetry with respect to magnetic field direction due to the
Zeeman splitting, which associates each charge carrier type with a
different spin orientation. In Supplementary Note 4, we explicitly
demonstrate how nonlocal resistances develop an asymmetry
with respect to the sign of an applied magnetic field in the pre-
sence of GBs. It is important to note that in the context of
quantum Hall experiments a strong dependence of ρxx with the
sign of B46–52 or a signature of edge transport in nonlocal mag-
netotransport measurements53–55 does not necessarily require a
graphene-specific model. In particular, an asymmetry of ρxx with
B has been observed in well-behaved semiconductor two-
dimensional electron gases, with mechanisms such as conduc-
tion paths in the bulk47, carrier density gradients48,49, hybrid
constrictions50, and in-plane electric fields51,52 driving the effect.
Our proposed mechanism, however, differs in that it can explain
not only the asymmetry of the nonlocal resistance but also the
large nonlocal signals beyond the Ohmic contribution at the
CNP. The physics of the LL0 in graphene, with a coexistence of
electrons and holes (and thus a sensitivity to electron−hole
asymmetries), has no equivalent in other low-dimensional sys-
tems. To demonstrate that GBs are at the origin of the B asym-
metry of the nonlocal signal, we perform a tight-binding
simulation in the nonlocal geometry with a single 558-type line
defect connecting the edges (see Methods) of a 40-nm-wide and
85-nm-long graphene channel. As seen in Fig. 5a, a highly
asymmetric nonlocal peak at the CNP emerges when a Zeeman
splitting is introduced in the presence of a line defect. This follows
directly from the electron−hole asymmetry of transmission
through the defect, discussed in further detail in Supplementary
Notes 4 and 5. The similarity between the modeled system and
the experimental results shown in Fig. 5b for the device with L/W
= 3.2 of the 5-μm-wide sample strongly suggests counter-
propagating edge states shunted by GBs to be at the root of the
large, asymmetric nonlocality observed in the samples. An
extended study over all devices with different aspect ratios of the
5-μm-wide sample shows a strong asymmetry of the nonlocality

with the sign of the magnetic field for all devices, further corro-
borating our analysis (see Supplementary Note 6). While all the
previous discussed origins could not address this strong asym-
metry, our proposed mechanism explains it. Furthermore, our
simulations capture additional peaks associated with the first
Landau level (LL1). A finite RNL is here associated with con-
duction through bulk states and not to counter-propagating
states, which only occur near the CNP. Higher LL peaks in RNL
follow ρxx, a feature previously demonstrated in other works3,11.

Due to the random formation of inhomogeneities and GBs
during the growth of CVD graphene, samples with individual,
random line defects can show nonlocality preferentially for either
positive or negative magnetic fields. Electron−hole asymmetry in
GB transmissions can arise due to both intrinsic sublattice effects
and external doping effects. Other considerations, including the
positioning of GBs relative to the probes, the rate of back-
scattering between counter-propagating states, and the density of
electron−hole puddles, can play an additional role in determining
the exact nonlocal signature. However, the qualitative effect (a
nonlocal peak at the CNP whose bulk-mediated suppression is
dependent on the sign of B) is very general and, in principle,
independent of sample size. However, larger samples contain
more grains across their width and the asymmetric effects of
individual GBs will tend to be averaged out. This will lead to
smaller asymmetries with the direction of B, but also smaller
nonlocal signals due to a greater number of bulk conduction
channels. This picture fits convincingly with the range of effects
exhibited by our measured graphene samples from the microscale
to the macroscale. Importantly, the appearance of a strong non-
local signal is independent of spin or valley transport mechanisms
arising from, for example, long-ranged coherent spin transport
and the SHE/ISHE effects.

In summary, we identify strong nonlocal signals in both
microscale and macroscale CVD graphene Hall-bar devices,
emerging when a perpendicular magnetic field is applied. The
observed signals share many similarities to experiments relying
on spin Hall or valley Hall effect mechanisms, but our control
experiments at the macroscale rule out both long-range spin and
valley polarized transport. The similarity of the nonlocal phe-
nomenon across different scales suggests that a different
mechanism is at the origin of such nonlocality. We propose a
mechanism driven by field-induced spin-split edge states. The
sensitivity of these states to electron−hole asymmetric transport,
induced by features such as GBs, strongly influences the nonlocal
resistance profiles. The persistence of this behavior to millimeter
length scales shows that defect-induced contributions to nonlocal
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transport could emerge in a wide range of measurements, and
may indeed dominate over more exotic sources of nonlocality in
practical devices made from scalable graphene materials.

Methods
Device fabrication. The same fabrication procedures were followed for the fab-
rication of the 5-, 50-, and 500-μm-wide CVD graphene samples. 1×1 cm2 Si(n++
doped)/SiO2(300 nm) chips with monolayer CVD graphene grown on copper foils
were acquired from a commercially available supplier, Graphenea S.A. All samples
reported here come from the same batch. The samples were first spin coated with
double-layer of Poly(methyl methacrylate) (PMMA) (495/950 kDa) and then baked
at 180 °C for 90 s. To define the Hall-bar-shaped graphene, the areas surrounding
the Hall bar were exposed with electron-beam lithography, and etched with a
chemistry of Ar/O2 (80/5 sccm) in a capacitive coupled plasma reactive-ion etching
Oxford PlasmaLab 80 equipment. The remaining resist leftovers were striped in
acetone bath at room temperature for 4 h, immersed in isopropanol, and dried with
a nitrogen gun. For the definition of the electrical contacts, the samples were again
spin coated with double-layer PMMA, and the metal electrodes defined over the
Hall bar. The metallization was done on ultra-high vacuum at a base pressure of 10
−9 mbar, using electron-beam deposition of Ti (5 nm)/Au (40 nm) at a rate of 0.5
and 1.5 Ås−1. The lift-off was performed with acetone at room temperature. One
important feature of the device design was the terminals width of 1/10th or less of
the channel width. This comes from a straightforward analysis of the van der Pauw
expression for charge diffusive backgrounds, where if the width of the contact is on
the same order of the channel width it can lead to edge-to-edge signals ~20 times in
magnitude larger than the center-to-center signal.

Electrical characterization. The devices were characterized in a Quantum Design
physical property measurement system using standard four-probe direct current
measurement methods. The measurements were performed using a Keithley 2182A
as current source and a Keithley 6221 as voltmeter. The gate voltage was applied
using one channel of the Keithley 2636. In all measurements, the excitation current
was 10 μA. Before measuring the devices, we performed an in situ annealing at 400
K for 3 h, with helium flushing cycles to release the sample chamber of evaporated
water. The samples would then be cooled down at the maximum rate to 2 K, and
any temperature-dependent study performed for increasing temperatures.

Tight-binding simulation. The system is described by a standard nearest-neighbor
tight-binding model with the magnetic field incorporated using the Peierl’s phase

approach H ¼P i;jh i t0 exp
2πie
h

Rrj
ri

A rð Þ � dr
 !

ĉyi ĉj, where B = ∇ ×A. The transmis-

sions between each set of probes is given by the Caroli formula Tpq ¼
Tr GRΓqGAΓp
� �

with the required Green’s functions (GR, GA) calculated using
efficient recursive techniques. The left and right leads are included via broadening
terms (Γ) calculated from the surface Green’s function of semi-infinite nanor-
ibbons, whereas constant broadening terms, representing metallic contacts, are
chosen for the top and bottom probes. The Zeeman term is included separately via
equal and opposite energy shifts of the spinless transmissions by half the required
splitting (10−3 eV). The total transmission is then the sum of the two spin con-
tributions (our model excludes spin-mixing terms). The nonlocal resistance is
calculated from the potentials Vp and currents Ip at each probe, which emerge from
solving the multi-terminal Landauer−Büttiker relation Ip ¼ 2e

h

P
q TqpVp � TpqVq
� �

with suitable boundary conditions. Additional potential terms are included to
represent the presence of charge inhomogeneities (electron−hole puddles) in the
system induced by the graphene/substrate interaction, and the random nature of
experimental GBs is accounted for by random local potentials in the vicinity of the
GB. Additional details and simulations are presented in Supplementary Note 5.

Data availability. All relevant data are available from the authors.
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