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We have developed an exchange-correlation kernel in the framework of time-dependent density-functional
theory that remarkably accounts for the electron-hole interaction and the optical properties of semiconductors.
This kernel, which we name JGM-G, generalizes the jellium-with-gap kernel of Trevisanutto et al. [Phys. Rev. B
87, 205143 (2013)] by considering the gradient of the density as a new ingredient. We have tested it on various
materials, from low-band-gap to wide-band-gap semiconductors, and we have demonstrated that the JGM-G
kernel yields an optical response that is close to experiment. These encouraging results indicate that the JGM-G
kernel can become a low-cost and practical tool for the description of excitonic effects in semiconductors.
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I. INTRODUCTION

In the framework of time-dependent density-functional
theory (TDDFT), the exact density-response function of a
many-electron system is found to be given by the following
Dyson-like expression (in atomic units) [1]:

χ (r, r′; ω) = χ0(r, r′; ω) +
∫

dr1 dr2 χ0(r, r1; ω)

× veff [n](r1, r2; ω) χ (r2, r′; ω), (1)

where χ0(r, r′; ω) is the noninteracting density-response
function of Kohn-Sham electrons at frequency ω and
veff [n](r1, r2; ω) represents an effective electron-electron in-
teraction:

veff [n](r, r′; ω) = 1

|r − r′| + fxc[n](r, r′; ω), (2)

with fxc[n](r, r′; ω) being the so-called exchange-correlation
(XC) kernel. The macroscopic dielectric function of the many-
electron system is obtained as follows

εM (q, ω) = 1/ε−1
G=G′=0(q, ω), (3)

where

ε−1
G,G′ (q, ω) = δG,G′ + vq+G χG,G′ (q, ω). (4)

Here, q represents a wave vector in the first Brillouin zone,
vk is the Fourier transform of the bare Coulomb interaction
1/|r − r′|, and χG,G′ (q, ω) represent the Fourier coefficients
of the density-response function of Eq. (1), G and G′ being
reciprocal lattice vectors.

The optical response of an arbitrary many-electron system
is obtained from the q → 0 limit of the macroscopic dielectric
function of Eq. (3). On the other hand, the exact XC energy
of an arbitrary many-electron system can be obtained by
using the adiabatic-connection fluctuation-dissipation theorem
(ACFDT) [2,3], from the knowledge of a density-response

function of the form of Eq. (1) with the full electron-electron
coupling strength e2 being replaced by a coupling strength λe2

with λ varying from 0 to 1. Both the ground-state energy and
the optical response call for the knowledge of the XC kernel
entering Eq. (2). In the random-phase approximation (RPA),
this kernel is simply taken to be zero. However, although RPA
is accurate for many ground-state properties [4–19] it fails to
describe excitons at insulators and semiconductors.

The success of the so-called Nanoquanta XC kernel [20,21],
derived from the Bethe-Salpeter equation [22], proved that
TDDFT can be used for the computation of the optical
properties of all kinds of materials. This accurate XC kernel
has, however, a very high computational cost, comparable to
solving the Bethe-Salpeter equation itself. Nowadays, there is
an intense ongoing research for the development of low-cost
XC kernels capable of describing excitonic effects of real solids
[23–36]. Among others, we have the Bootstrap (iteration)
kernel [23], the long-range contribution (LRC) kernel [37,38]
and its simplifications/improvements [29,31], as well as a
kernel that is based on a jellium-with-gap model (JGM) [33].
All these kernels take into account the ultra-nonlocality effect:
an exact property derived from the zero-force theorem [39,40],
which happens to be crucial for the description of excitonic
effects. Another XC kernel that can well describe the optical
properties of materials [36] is a simple and nonempirical
dynamical polarization functional derived from the Vignale-
Kohn functional [41], in the context of time-dependent current
density-functional theory (TDCDFT) [34,41,42].

In this paper, we present an XC kernel: JGM-G, which
improves over the JGM kernel by introducing the density
gradient ∇n as a variable in addition to the density n and the
fundamental band gap Eg . The JGM-G kernel is simpler than
JGM but more powerful because of the ∇n dependence, and
it is found to be remarkably accurate for the description of
the optical properties of a great variety of semiconductors.
The paper is organized as follows. In Sec. II, we introduce
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the theoretical development of our JGM-G XC kernel. The
computational details are reported in Sec. III. In Sec. IV, we
show and discuss our results for the so-called macroscopic
dielectric function εM (both �εM and �εM ) of a large palette
of bulk materials. In Sec. V, we summarize our main results
and present our conclusions.

II. CONSTRUCTION OF THE JGM-G
EXCHANGE-CORRELATION KERNEL

The JGM XC kernel [33] was constructed from the
Constantin-Pitarke (CP) static XC kernel of a uniform electron
gas [43], by incorporating the ultra-nonlocality condition
derived from a jellium-with-gap model system [33,44]. This
kernel has, in momentum space, the following jelliumlike
sophisticated expression [33]:

f JGM
xc (q; n,Eg ) = 4π

q2
B ′(n,Eg )[e−k′

n,Eg
q2 − 1]

− 4π

k2
F

C ′(n,Eg )

1 + 1/q2
, (5)

where Eg represents the fundamental band gap,

B ′(n,Eg ) = B(n) + Eg

1 + Eg

, C ′(n,Eg ) = C(n)

1 + Eg

,

(6)

k′
n,Eg

= kn + 1

4πq2

E2
g

nB ′(n,Eg )
,

and

kn = − 1

4π

d2

dn2
[nεxc(n)], (7)

with εxc = εx + εc being the XC energy per particle of the
uniform electron gas which we obtain from the Perdew-Wang
parametrization [45]. kF represents the magnitude of the Fermi
wave vector, and [43]

B(n) = 1 + 2.15r
1/2
s + 0.435r

3/2
s

3 + 1.57r
1/2
s + 0.409r

3/2
s

,

(8)

C(n) = − π

2kF

d(rsεc )

drs

.

Here rs = (3/4πn)1/3 is the bulk parameter.
The last term of Eq. (5), which yields a complicated real-

space expression (see Eq. [A5] of Ref. [43]), does not play a
role in the description of the optical response dictated by the
q → 0 limit. Thus, Patrick and Thygesen [46] proposed the
following simplified version of the JGM kernel, named JGMs:

f JGMs
xc (q; n,G) = 4π

q2
[e−knq

2
e−G2/(4πn) − 1], (9)

with G = Eg . This simplified kernel is remarkably accurate
for the description of a uniform electron gas [15] and also
for the description of a number of ground-state properties of
bulk solids [46] (equilibrium lattice constants, bulk moduli, and
correlation energies). Moreover, this kernel preserves the ultra-
nonlocality condition fulfilled by the original JGM kernel:

f JGMs
xc (q → 0; n,Eg ) = f JGM

xc (q → 0; n,Eg ) = − E2
g

nq2
,

(10)

and agrees well with original JGM kernel when q � 1 (see
Fig. 1 of Ref. [43]) so the kernels JGM and JGMs yield practi-
cally the same optical properties. The real-space representation
of JGMs is [46]:

f JGMs
xc (R) = 1

R

[
e−G2/(4πn)erf

(
R

2
√

kn

)
− 1

]
, (11)

with R = |r − r′| and erf (x) the error function. When G = 0,
Eq. (11) yields the CP kernel [15,43].

For a JGM-G kernel with a density gradient, we still use
Eq. (11) but with G = Eg being now replaced by

G = Egf (n,∇n), (12)

so when Eg = 0 the JGM-G kernel still recovers the simplified
CP kernel, which, as in the ALDA, can accurately account for
the optical properties of metals [47]. For the functionf (n,∇n),
we propose the following heuristic expression for bulk solids:

f (n,∇n) = a

1
V

∫
V

dr |∇n|2
n2

|∇n|4
n4

, (13)

where a is a non-negative parameter (a � 0). We recall that
averages over the unit cell have also been used, with good
results, in the development of a kinetic-energy functional for
an orbital-free DFT [48], and especially in the construction
of the MBJ semilocal exchange potential that is accurate for
the study of band gap energies of solids [49]. Moreover, the
ratio |∇n|/n is an important density indicator, being used in
hybrid functionals with local range separation [50], in the MBJ
semilocal exchange potential construction [49], and in local
band gap models [51,52].

We fix the parameter a = 0.46, in such a way that the JGM-
G kernel yields optical absorption spectra of the low-band-
gap semiconductors InSb (Eg = 0.23 eV) and InAs (Eg =
0.43 eV) that coincide with the optical absorption spectra
obtained with the JGM or JGMs kernel. This condition ensures
that at low values of Eg the JGM-G kernel converges with
JGM and JGMs. This completes the construction of our kernel
JGM-G.

In the case of finite systems, the tail of the electron density
decays as [53] n ∼ e−2

√
2Ir , with I being the ionization

potential (in absolute value). Equation (12) then becomes

G = Eg

I

a

8

|∇n|4
n4

. (14)

Let us consider, in particular, jellium clusters, as they represent
important model systems in solid-state physics. We recall that
a neutral jellium cluster with N electrons and bulk parameter
rs has the radius Rc = rsN

1/3 and the external potential

Vext (r) =
{

N
(− 3

2Rc
+ r2

2R3
c

)
, r < Rc

−N 1
r
, r � Rc

(15)

due to a positive background density

n+(r) =
{

3/4πr3
s r < Rc

0 r � Rc

. (16)

Even for intermediate values of N (e.g., N � 58), inside the
cluster radius (i.e., when r � Rc) the density varies slowly so
jellium-based XC kernels are accurate.
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FIG. 1. The real-space XC kernels (simplified CP, JGMs, JGM-
G, rALDA [46,54–56]) for jellium spheres with N = 58 electrons,
and rs = 3.93 (upper panel), and rs = 2.07 (lower panel), versus the
scaled radial distance r/Rc. Note that rs = 3.93 corresponds to Na,
and rs = 2.07 to Al.

In Fig. 1, we show several XC kernels fxc(r ), with r

being the radial distance of jellium spheres, for N = 58
electrons and rs = 3.93 and 2.07. The calculations have been
performed with the Engel code [57,58], using LDA orbitals
and densities. The band gap used in JGMs and JGM-G
has been obtained as Eg = I − A = [E(N − 1) − E(N )] −
[E(N ) − E(N + 1)]. The CP and rALDA kernels agree well
everywhere, but the rALDA kernel shows more structure and
small oscillations. As expected, the JGM-G kernel nicely
recovers the CP kernel in the interior of the sphere (at r � Rc),
thus correcting over the JGMs kernel. At r � Rc, the JGM-G
coincides with JGMs kernel, thus recovering the −1/r limit
faster than in the case of the CP and rALDA kernels. Hence, due
to its density-gradient dependence, our JGM-G kernel is able to
distinguish regions where the density varies slowly or rapidly.

III. COMPUTATIONAL DETAILS

For the evaluation of the macroscopic dielectric function
εM , we first compute the eigenvalues and eigenfunctions of
a single-particle Kohn-Sham Hamiltonian in the framework
of density-functional theory (DFT) by using the QE package
(V5.3, Quantum Espresso Foundation, Cambridge, UK) [59]
with PBE Trouiller-Martins norm-conserving pseudopoten-
tials including sp electrons only as valence electrons, as for
the energies under study this is enough for the description

of the optical response of bulk materials. We have used the
following Monkhorst-Pack k-point meshes: 24 × 24 × 24 for
InSb, InAs, Ge, InP, AlAs, and GaP, and 32 × 32 × 32 for the
remaining systems. An energy cutoff of 150 Ry was used for
InAs and MgO, 160 Ry for InP, 180 Ry for LiF, and 120 Ry
for the remaining systems.

For the calculation of the macroscopic dielectric function
εM the Yambo code [60] was used, after implementation of
the JGMs kernel and our JGM-G kernel as well. Our full
calculations were performed with reciprocal-space matrices
of size NG for both fxc and the density-response function:
NG = 307 for MgO and LiF, and NG = 113 for the remaining
systems. We first derive the Fourier coefficients of the XC
kernel of Eq. (9) [or Eq. (11)], which we then use to obtain [by
solving Eq. (1) in reciprocal space] the Fourier coefficients
χG,G′ entering Eq. (4).

For an accurate description of the band structure, we cal-
culate the noninteracting Kohn-Sham density-response func-
tion χ0 in the framework of a scissor-operator corrected
DFT with ESO = EEXP

g − EDFT
g , EEXP

g being the experimental
fundamental band gap also used in the construction of the
kernels JGMs and JGM-G. Instead, one can use the so-called
GW approximation of many-body theory, but the use, in the
framework of DFT, of a scissor operator yields the same results
for the optical response, as already shown in the literature
[21,23,33,37,38]. Accurate band-gap energies can also be
obtained from semilocal DFT approaches [49].

IV. RESULTS

In the optical limit of long wavelengths, one writes the real
and the imaginary part of the macroscopic dielectric function
εM as follows

ε1(ω) = �[
lim
q→0

εM (q, ω)
]
,

ε2(ω) = �[
lim
q→0

εM (q, ω)
]
. (17)

The optical absorption spectrum is simply dictated by ε2,
the Fresnel reflectivity at normal incidence is R(ω) =
|(√ε(ω) − 1)/(

√
ε(ω) + 1)|2, and the long-wavelength

limit of the electron-energy-loss function is equal to
ε2(ω)/[ε1(ω)2 + ε2(ω)2].

In this section, we show both ε1(ω) and ε2(ω) for a large
variety of semiconductors and insulators (InSb, InAs, Ge,
GaSb, Si, GaAs, InP, AlAs, GaP, SiC, AlP, and diamond),
whose band-gap energies lay between 0.23 eV and 5.48 eV,
and we also report the optical absorption spectra of the
wide-band-gap insulators MgO and LiF. Experimental lattice
constants with zero-point energy (ZPE) corrections are taken
from Ref. [13] for all materials except GaSb. For GaSb, the
experimental lattice constant (with no ZPE correction) is taken
from Ref. [61].

The experimental ε1(ω) and ε2(ω) are both known to be
sensitive to the temperature. In particular, the intensity of the
first optical-absorption peak increases significantly when the
temperature decreases from ≈300 K to below 100 K, as shown
for Si in Fig. 4 of Ref. [62], for Ge in Fig. 2 of Ref. [63], and
for GaP in Fig. 3 of Ref. [64]. In all these cases, the absorption
peaks are also blueshifted as temperature decreases. Thus,
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FIG. 2. ε1(ω) and ε2(ω) computed in the linear-response TD-
DFT, from several XC kernels (RPA, JGMs, and JGM-G) versus
ω, for the InSb low-gap semiconductor (Eg = 0.23 eV [67]). The
experimental curves are from Ref. [66] (at T = 100 K). The results
are obtained with Lorentzian broadening of 0.1.

we compare our calculations with experimental data obtained
at the lowest possible temperature. In all figure captions,
we report the experimental temperature. For InAs, SiC, AlP,
diamond, MgO and LiF, we use experimental data obtained at
room temperature. In the case of diamond, temperature effects
are known to be nearly negligible [65]. For SiC [38], MgO
[33,38], and LiF [20] the Bethe-Salpeter results agree well
with experiment, so temperature effects for these materials are
also expected to be small.
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FIG. 3. Same as Fig. 2 but for the InAs low-gap semiconductor
(Eg = 0.43 eV [67]). The experimental curves are from Ref. [70]
(at room temperature). The results are obtained with Lorentzian
broadening of 0.1.

A. Indium antimonide (InSb)

In the case of low-band-gap semiconductors, the electron-
hole (e-h) interaction has an impact on the spectral weight of
the excitations. In order to measure this spectral weight, we
consider the following ratio:

ζ2 = ε2(ωl )

ε2(ωf )
, (18)

where ωl and ωf represent the energies of the last and first
peaks of the absorption spectrum, respectively.

In Fig. 2, we show ε1(ω) and ε2(ω) as obtained in the RPA
and with the use of the XC kernels JGMs and JGM-G. For this
low-band-gap semiconductor, ε1(ω) and ε2(ω) are not sensitive
to whether the kernel JGMs or the kernel JGM-G is used in our
calculations: Both results are indistinguishable to the naked
eye. The RPA is also rather accurate, but the use of the XC
kernel JGMs or JGM-G clearly improves the ratio ζ2: ζ RPA

2 ∼
1.4, ζ JGMs

2 = ζ JGM−G
2 ∼ 1.3, and ζ

exp
2 ∼ 1.2. This brings us to

the conclusion that the use of both JGMs and JGM-G kernels
yields a description of the main excitonic peak at 4 eV that is
more realistic than in the RPA. The two consecutive peaks of
the experimental absorption spectra at ∼2 and 2.5 eV, which
are not present in our calculations, are due to a large spin-orbit
splitting [68] not considered here.

In the case of ε1(ω), both the RPA and the use of the kernels
JGMs and JGM-G yield good results in close agreement with
experiment in the entire range of energies under study (from
0 to 6 eV). We note that the results obtained by using the
kernels JGMs and JGM-G are overall slightly superior to the
RPA calculation. An accurate description of InSb is important,
as it is used in infrared detectors, including thermal imaging
cameras, in forward looking infrared (FLIR) systems, and in
other optical devices [69].

B. Indium arsenide (InAs)

In Fig. 3, we show ε1(ω) and ε2(ω) for the low-band-gap
semiconductor InAs. As in the case of InSb, the JGMs and
JGM-G curves are indistinguishable and they both improve
the ratio ζ2 over the RPA: ζ RPA

2 ∼ 1.7, ζ JGMs
2 = ζ JGM−G

2 ∼ 1.6,
and ζ

exp
2 ∼ 1.4. Also as in InSb, the two consecutive peaks of

the experimental absorption spectra at ∼2.5 and 2.8 eV are
due to a large spin-orbit splitting [68] not considered here, and
the results we obtain by using the kernels JGMs and JGM-G
are here also superior to the RPA calculation in that they yield
ε1(ω) = 0 at an energy that is closer to experiment by 0.05 eV,
although still another 0.05 eV higher than the experimental
value. InAs, like InSb, has applications in various infrared
optical devices [71].

C. Germanium (Ge)

In Ge, as in InSb and InAs, ε1(ω) and ε2(ω) are not sensitive
to whether the JGMs kernel or the JGM-G kernel is used in our
calculations (see Fig. 4) and both kernels improve considerably
the ratio ζ2 over the RPA: ζ RPA

2 ∼ 1.6, ζ JGM−G
2 ∼ 1.4, ζ JGMs

2 ∼
1.35, and ζ

exp
2 ∼ 1.3. The results we obtain by using the kernels

JGMs and JGM-G are here also superior to the RPA calculation
in that they yield ε1(ω) = 0 at an energy that is closer to
experiment by 0.05 eV, although still 0.1 eV higher than the
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FIG. 4. Same as Fig. 2 but for the Ge low-gap semiconductor
(Eg = 0.74 eV [49]). The experimental curves are from Ref. [63] (at
T = 100 K). The results are obtained with Lorentzian broadening of
0.15.

experimental value. Germanium optical components are used
in many infrared applications, including, for example, thermal
imaging and spectroscopy [72].

D. Gallium antimonide (GaSb)

The results we have obtained for GaSb are shown in Fig. 5.
As before, ε1(ω) and ε2(ω) are not sensitive to whether the
JGMs kernel or the JGM-G kernel is used in our calculations.
Overall, both kernels give a realistic description of ε1 and ε2,
considerably improving over RPA calculations. The calculated
optical absorption spectra exhibits an averaged, rounded peak
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FIG. 5. Same as Fig. 2 but for the GaSb semiconductor (Eg =
0.81 eV [67]). The experimental curves are from Ref. [73] (at T =
10 K). The results are obtained with Lorentzian broadening of 0.2.
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FIG. 6. Same as Fig. 2 but for the Si semiconductor (Eg =
1.17 eV [49]). The experimental curves are from Ref. [62] (at
T = 30 K). The results are obtained with Lorentzian broadening of
0.1.

at about 2.5 eV instead of the two consecutive experimental
peaks at 2.2 and 2.6 eV, which as in the case of InSb and InAs
are the result of a spin-orbit splitting [68] not included in our
calculations.

As for the energy at which ε1(ω) = 0, both JGMs and JGM-
G calculations are blueshifted by 0.25 eV with respect to the
experimental data, but they are closer to experiment than in
the RPA. We also note that there is a weak structure in ε2 at
5–6 eV that is present in all our calculations, no matter whether
the XC kernel is taken to be zero (RPA) or not. GaSb is used
for infrared detectors, infrared LEDs, and thermophotovoltaic
systems [72].

E. Silicon (Si)

Silicon is one of the most important materials in current
technologies and represents a difficult test in the assessment of
theoretical methods for the description of the optical properties
of a variety of materials. Electron-hole interactions are more
pronounced in Si than in the low-band-gap semiconductors
discussed above. As a result, the RPA fails to realistically
describe ε1 and ε2 in Si, as can be seen in Fig. 6.

In Si, the introduction of the density gradient in Eq. (12)
considerably improves both ε1 and ε2, i.e., the spectra one
obtains by using the XC kernel JGM-G is considerably superior
to that obtained with the use of JGMs. The introduction of the
density gradient appears to be particularly important for the
description of the oscillator strength associated to the peak at
3.4 eV. The accuracy we reach with the use of the XC kernel
JGM-G is comparable to, or even better than, the accuracy one
obtains with the use of other low-cost methods such as the
Bootstrap self-consistent scheme [23] and a meta-generalized
gradient approximation (meta-GGA) [32], although still worse
than the result one obtains with the use of a dynamical
polarization functional [36].
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FIG. 7. Same as Fig. 2 but for the GaAs semiconductor (Eg =
1.42 eV [67]). The experimental curves are from Ref. [78] (at T =
22 K). The results are obtained with Lorentzian broadening of 0.2.

The use of our kernel JGM-G yields a significant improve-
ment over the use of JGMs for both ε1 and ε2, which are now
very close to experiment in the whole energy range under study
(from 2.5 to 6 eV). As for the ratio ζ2, we find: ζ JGMs

2 ∼ 1.5,
ζ JGM−G

2 ∼ 1.1, and ζ
exp
2 ∼ 1.1.

The excellent performance of our kernel JGM-G proves
the important role that the density gradient ∇n plays in
the construction of the XC kernel. We note, however, that
while the introduction of the density gradient in ground-state
calculations is now usual practice, the density gradient has not
been often used in the development of TDDFT XC kernels [74].
An exception is the TDCDFT Vignale-Kohn XC functional
[35,75,76]. Silicon has a huge variety of optical applications,
from infrared systems [72] to various solar cell devices [77].

F. Gallium arsenide (GaAs)

The results we have obtained for GaAS are shown in Fig. 7.
In this case the ratio ζ2 is found to be more accurate when the
kernel JGMs is used: ζ JGMs

2 ∼ 1.2, ζ JGM−G
2 ∼ 1.4, and ζ

exp
2 ∼

1.2.
As for the energy at which ε1(ω) = 0, both JGMs and

JGM-G calculations are slightly blueshifted by 0.1 eV and
0.2 eV, respectively, with respect to experiment. Nevertheless,
both kernels yield a realistic description of ε1 and ε2 that is
comparable to the performance of, for example, the Bootstrap
kernel [23]. In the energy range that goes from 2 to 2.5 eV,
however, all our computed absorption spectra are smooth, as
in the experiment, while the Bootstrap absorption spectrum
[23] exhibits a pronounced structure in this region. Gallium
arsenide is widely used in infrared devices, laser diodes, solar
cells, and optical windows [72,79].

G. Indium phosphide (InP)

The results we have obtained for InP are shown in Fig. 8. In
this case, both kernels under study, JGMs and JGM-G, yield a
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FIG. 8. Same as Fig. 2 but for the InP semiconductor (Eg =
1.42 eV [67]). The experimental curves are from Ref. [80] (at
T = 30 K). The results are obtained with Lorentzian broadening of
0.1.

very accurate description of ε1 and ε2 in close agreement with
experiment. InP nanowires are known to have a great potential
for optoelectronics [81], and a practical tool such as the simple
JGM-G kernel can be of interest in this field.

H. Aluminium arsenide (AlAs)

The results we have obtained for AlAs are shown in Fig. 9.
In this case, while RPA calculations largely underestimate
the first absorption peak the use of the kernel JGMs largely
overestimates this peak. The second absorption peak is also
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FIG. 9. Same as Fig. 2 but for the AlAs semiconductor (Eg =
2.24 eV [82]). The experimental curves are from Ref. [83] (at T =
95 K). The results are obtained with Lorentzian broadening of 0.1.
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FIG. 10. Same as Fig. 2 but for the GaP semiconductor (Eg =
2.32 eV [67]). The experimental curves are from Ref. [64] (for T =
15 K). The results are obtained with Lorentzian broadening of 0.1.

poorly described by RPA and JGMs: The RPA peak is
blueshifted, while the JGMs peak is too shallow and redshifted
by about 0.2 eV. The use of our density-gradient-corrected
kernel JGM-G, however, yields an excellent description of
the experimental optical absorption in the whole energy range
under study. Our kernel also considerably improves the ratio ζ2

over JGMs: ζ JGMs
2 ∼ 0.8, ζ JGM−G

2 ∼ 1.2, and ζ
exp
2 ∼ 1.4, and

the energy at which ε1 = 0 is considerably better described
by the use of JGM-G. AlAs, together with GaAs, is used in
excitonic devices, such as the exciton optoelectronic transistor
[84].

I. Gallium phosphide (GaP)

In Fig. 10, we show ε1(ω) and ε2(ω) for GaP. RPA cal-
culations largely underestimate the first absorption peak. The
kernels JGMs and JGM-G, however, both yield a reasonably
accurate description of the absorption spectra, with ζ JGMs

2 ∼
0.6, and ζ JGM−G

2 ∼ 0.8 close to ζ
exp
2 ∼ 0.7. The energy at

which ε1 = 0 is considerably better described with the use
of the kernel JGM-G. The second peaks of ε2 and ε1 are
also significantly better described by the kernel JGM-G. The
nonempirical dynamical polarization functional of TDCDFT
[36] was also found to be accurate here. We recall that GaP
has been used for photonic-crystal nanocavities, being of
interest for integrated, low-power light sources [85] and for
submicron-scale optoelectronic devices in the visible [86].

J. Silicon carbide (SiC)

SiC, like AlP and diamond (both considered below), be-
longs to a class of materials exhibiting a continuum of excitonic
effects with no specific peaks. In this case, the excitonic
effects are expressed through an increased slope and/or a
shoulder just before the main absorption peak. ε1(ω) and ε2(ω)
for SiC are shown in Fig. 11. The best results are clearly
obtained with the use of the kernel JGM-G, which significantly
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FIG. 11. Same as Fig. 2 but for the SiC semiconductor (Eg =
2.42 eV [87]). The experimental curves are from Ref. [38] (at room
temperature). The results are obtained with Lorentzian broadening of
0.3.

improves, in the whole energy range under study (yielding in
particular a slope that is very close to the experimental one),
over the use of the kernel JGMs. Moreover, at 9 eV both in
the RPA and with the use of the kernel JGMs ε1 is found to be
positive, while the use of our kernel JGM-G yields a negative
value for ε1 in agreement with the experiment, and also with
Bethe-Salpeter calculations (see Fig. 15 of Ref. [38]). SiC is
an important wide-band-gap semiconductor that is being used
for high-power electronics and photonic devices [88], and SiC
nanowires have useful optical properties as well [89].

K. Aluminium phosphide (AlP)

The results we have obtained for AlP are shown in Fig. 12.
The experimental absorption spectrum has a main peak at
about 4.8 eV, which is strongly underestimated in the RPA
and strongly overestimated when the kernel JGMs is used. By
using our kernel JGM-G, however, we obtain an absorption
spectrum that is in excellent agreement with experiment. An
excellent agreement with experiment is also obtained for ε1.
While the energy at which ε1 = 0 is blueshifted in the RPA
by about 0.5 eV and redshifted with the kernel JGMs by the
same quantity (0.5 eV), with the use of our density-gradient-
corrected kernel JGM-G ε1 is predicted to be zero at an energy
that is very close to the experimental value. Ultrafast exciton
dynamics in colloidal AlP nanocrystals were observed recently,
showing that these exciton dynamics could be potentially
useful for highly efficient optoelectronics materials [91].

L. Diamond (C)

Diamond is one of the most commonly studied and used
wide-band-gap solids in optical engineering [92]. The results
we have obtained for diamond are shown in Fig. 13. In this case,
the kernel JGMs is slightly superior to the kernel JGM-G, but
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FIG. 12. Same as Fig. 2 but for the AlP semiconductor (Eg =
2.52 eV [82]). The experimental curves are from Ref. [90] (at room
temperature). The results are obtained with Lorentzian broadening of
0.1.

both kernels yield a remarkable agreement with experiment for
both ε1 and ε2, while RPA calculations are very poor.

M. Wide-band-gap insulators: Magnesium oxide (MgO)
and lithium fluoride (LiF)

Here we briefly discuss the optical absorption spectra of two
wide-band-gap insulators: MgO and LiF. These are difficult
cases for low-cost XC kernels and even for computationally
more costly methods, such as the use of the Bethe-Salpeter
equation in the context of many-body perturbation theory [39].

6 8 10 12 14 16 18 20
Energy [eV]

0

5

10

15

20

ε 2

Exp.
RPA
JGMs
JGM-G

Diamond

6 8 10 12 14 16 18 20

Energy [eV]
-10

-5

0

5

10

15

20

ε 1

Diamond

FIG. 13. Same as Fig. 2 but for the diamond wide-gap semi-
conductor (Eg = 5.48 eV [49]). The experimental curves are from
Ref. [38]. Temperature effects are almost negligible [65]. The results
are obtained with Lorentzian broadening of 0.25.
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FIG. 14. Optical absorption spectrum of the MgO wide-gap insu-
lator. (Eg = 7.7 eV [49]). The experimental data is from Ref. [93]
(at room temperature). The results are obtained with Lorentzian
broadening of 0.2.

Our main focus here is on excitonic effects, where the jellium-
with-gap model proved to be the right model system.

Figure 14 shows the optical absorption spectra we have
obtained for MgO. In this case, the use of the kernel JGM-G
yields a better description of the first absorption peak, although
it is still overestimated. For the second peak, the kernel JGM-G
yields a shoulder (instead of a well-defined peak) and the
kernel JGMs yields a plateau containing also the first peak.
However, the third, fourth, and fifth peaks (at 13 eV, 17 eV,
and 21 eV, respectively) closely agree with the corresponding
experimental peaks. Noting that the Bootstrap kernel fails for
this material [31], we conclude that the use of the kernels JGMs
and JGM-G represents a very important step forward.

In Fig. 15, we show the optical absorption spectra we have
obtained for LiF. The very-well-defined bound exciton in this
material is reasonably well described by using the kernels
JGMs and JGM-G, while the RPA fails completely. We note
that the overestimated exciton peak that is obtained by using the
kernel JGMs is reduced when our density-gradient-corrected
kernel JGM-G is used (thus going in the right direction),
although at the same time blueshifted by about 0.25 eV.

N. Summary

In Table I, we show various quantities of interest for all
materials under study. First of all, we show the fundamental
band-gap energy Eg and the maximum value of the density
gradient max |∇n|, which gives us an idea about the electron-
density variation in the unit cell. The wide-gap semiconductors
(SiC, diamond) and insulators (MgO and LiF) exhibit rapid
variations of the electron density, as expected. In the case of
regular semiconductors, however, there is no simple relation
between Eg and max |∇n|.

The most important contribution to the absorption spectra
is dictated by the head of the matrix kernel, which in the case
of a static kernel, such as the kernels considered here, is of
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FIG. 15. Optical absorption spectrum of the LiF wide-gap insu-
lator. (Eg = 13.6 eV [94]). The experimental data is from Ref. [20]
(at room temperature). The results are obtained with Gaussian
broadening of 0.25.

the form α/q2. As in Ref. [33], we extract the parameter α for
JGMs and JGM-G: αJGMs and αJGM-G. These results are also
reported in Table I.

In Table II we report the parameter ζ2 [see Eq. (18)] for nine
low and medium band-gap materials. These values are rather
insensitive to the broadening, thus providing a fair comparison
between different approaches. The error statistics (MAE and
MARE) exhibit a significant overall improvement when the
kernel JGM-G is used (instead of the kernel JGMs).

Next, we analyze the impact of crystal local-field effects
(LFE). We note that in the present TDDFT calculations
of the density-response matrix one can separate the crystal
local-field effects coming from the nonhead elements of the
noninteracting Kohn-Sham density-response matrix and the

TABLE I. The band gap energies (in eV), the maximum value of
|∇n| in the unit cell, the extracted JGMs and JGM-G LRC parameters
(αJGMs and αJGM−G). In order to compare αJGMs and αJGM-G, we show in
bold the values that corresponds to better agreement with experiment.

Eg (eV) max |∇n| αJGMs αJGM-G

InSb 0.23 0.064 −0.009 −0.009
InAs 0.43 0.092 −0.03 −0.03
Ge 0.74 0.071 −0.06 −0.06
GaSb 0.81 0.065 −0.09 −0.09
Si 1.17 0.083 −0.12 −0.19
GaAs 1.42 0.096 −0.22 −0.16
InP 1.42 0.134 −0.27 −0.24
AlAs 2.24 0.097 −0.52 −0.37
GaP 2.32 0.138 −0.51 −0.42
SiC 2.42 0.51 −0.25 −0.39
AlP 2.52 0.14 −0.6 −0.48
Diam 5.48 0.509 −0.68 −0.87
MgO 7.7 2.046 −3.36 −3.96
LiF 13.6 3.768 −7.81 −8.0

TABLE II. The ratio ζ2 [see Eq. (18)] for experiment (ζ exp
2 ), RPA

(ζ RPA
2 ), JGMs (ζ JGMs

2 ), and JGM-G (ζ JGM-G
2 ) for nine low and medium

band-gap materials. The last lines show the mean absolute errors
(MAE) and the mean absolute relative errors (MARE).

ζ
exp
2 ζ RPA

2 ζ JGMs
2 ζ JGM-G

2

InSb 1.2 1.4 1.3 1.3
InAs 1.4 1.7 1.6 1.6
Ge 1.3 1.6 1.4 1.4
GaSb 1.2 1.4 1.2 1.2
Si 1.1 2.2 1.5 1.1
GaAs 1.2 1.9 1.2 1.4
InP 1.3 2.0 1.3 1.4
AlAs 1.4 2.9 0.8 1.2
GaP 0.7 2.5 0.6 0.8

MAE 0.8 0.17 0.11
MARE (%) 72.7 13.8 9.2

crystal local-field effects coming from the nonhead elements
of the f JGM-G

xc matrix. In this analysis, we always include the
crystal local-field effects coming from the nonhead elements
of the noninteracting Kohn-Sham density-response matrix and
we focus on the impact of crystal local-field effects coming
from the nonhead elements of the f JGM-G

xc matrix. In Fig. 16,
we plot the results we obtain for the optical absorption of Si
when (i) only the head (G = G′ = 0) of the f JGM-G

xc matrix is
considered (blue line), (ii) all (and only) the diagonal elements
(G = G′) of the f JGM-G

xc matrix are considered (red line), and
(iii) the full f JGM-G

xc matrix is included (black line). We clearly
see that due to the presence of crystal local-field effects the
excitonic peak is brought closer to experiment. We also see
that crystal local-field effects are nearly fully incorporated by
simply taking the nonhead diagonal elements of the f JGM-G

xc

matrix, the impact of the nondiagonal elements (the wings)
being small.
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FIG. 16. Optical absorption spectra ε2 of Si, using the full JGM-G
matrix kernel (black line), the head of the kernel matrix G = G′ = 0
(blue line), and the diagonal part G = G′ (red line) compared with
experiment (green circles).
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FIG. 17. The α(r) values as a function density n(r) in the unit
cell, for InP (left panel) and AlAs (right panel). The total JGMs
averaged values are represented by black circles (< α >= −0.27 for
InP and < α >= −0.52 for AlAs). The total JGM-G averaged values
are represented by big bold red circles (< α >= −0.24 for InP and
< α >= −0.37 for AlAs). The red squares show the averaged values
of αJGM−G(r) over 10 equidistant density intervals.

Finally in Fig. 17 we show α(r) = −G2/n(r), where
G = Eg for JGMs and G = G(n(r),∇(r)) for JGM-G [see
Eq. (12)]. While αJGMs(r) is a well-defined function of the
density, αJGM-G(r) has multiple values for a given density, be-
cause of the ∇n dependence. When averaging αJGM-G(r) over
10 equidistant density intervals, one observes that the main
contribution to the optical absorption is shifted to densities that
are higher than in the case of the kernel JGMs. This represents
a crucial difference between these two kernels and shows the
novelty of our kernel JGM-G.

V. CONCLUSIONS

We have constructed an XC kernel (named JGM-G), by
incorporating the density gradient as an ingredient, with

the purpose of providing a low-cost, practical tool for the
computation of the optical properties of semiconductors and
insulators. We have tested this kernel on a large variety of
semiconductors: low-band-gap semiconductors (InSb, InAs,
and Ge) exhibiting discrete excitonic effects, regular semi-
conductors (GaSb, Si, GaAs, InP, AlAs, and GaP) showing
enhanced optical properties of great technological interest,
and wide-band-gap semiconductors (SiC, AlP, and diamond)
characterized by continuous excitonic effects. For all these bulk
materials, the JGM-G kernel yields accurate results, in general
very close to experiment even when kernels like JGMs, not
containing the density gradient as an ingredient, fail.

The JGM-G kernel improves with respect to the original
kernel JGM of Ref. [33] and the simplified kernel JGM (JGMs)
proposed in Ref. [46]. Particularly important are the results we
have obtained for AlAs, GaP, and AlP, where the original kernel
JGM (and also JGMs) clearly overestimates the excitonic
effects, and also for Si and SiC, where the original kernel JGM
(and also JGMs) clearly underestimates the excitonic effects.
In all these cases, the incorporation of the density gradient as
an ingredient leads to the kernel JGM-G, which is remarkably
accurate for the description of the optical absorption.

Our kernel JGM-G corrects the wrong long-range part of
the original JGM (and also JGMs) kernel, as seen in the case
of jellium spheres, and this explains the good behavior of
JGM-G for the description of optical properties in a variety
of semiconductors. We recall that the density gradient ∇n has
played a major role in the DFT description of ground-state
properties of materials, and we expect it to also play a major
role in the TDDFT description of the electronic response
of a great variety of metals, semiconductors, and insulators.
Furthermore, other possible gradient-dependent improvements
of the original JGM should not be ruled out.
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