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The interfacial Dzyaloshinkii-Moriya interaction defines a rotational sense for the spin structure in
two-dimensional magnetic films and can be used to create chiral magnetic structures like spin spirals and
skyrmions in those films. Here, we show by means of atomistic calculations that in heterostructures an
interlayer coupling of the Dzyaloshinskii-Moriya type across a spacer can emerge. We quantify this
interaction in the framework of the Lévy-Fert model for trilayers consisting of two ferromagnets separated
by a nonmagnetic spacer and show that such an interlayer Dzyaloshinkii-Moriya interaction yields
nontrivial three-dimensional spin textures across the entire trilayer, which evolve within as well as between
the planes and, hence, combine intraplane and interplane chiralities. This analysis opens new perspectives
for three-dimensional tailoring of magnetic chirality in multilayers.
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The magnetic Dzyaloshinskii-Moriya interaction (DMI)
arises in systems with bulk inversion asymmetry [1,2].
Without bulk inversion asymmetry, the DMI arises at
interfaces only and couples two magnetic sites both sitting
within a surface layer [1,3]. This interaction appeared to be
a very important property of interfacial systems because it
is responsible for a unique rotational sense of magnetiza-
tion and can be used to create topological objects like
magnetic skyrmions and chiral domain walls [4–7] that are
attractive candidates for data storage, transfer, and process-
ing [8–10]. The DMI corresponds to an antisymmetric part

of the exchange tensor and is described by a vector quantity
D⃗. The orientation and strength of D⃗ can be estimated using
the Moriya symmetry rules [11], the Lévy and Fert model
[3], or first-principles calculations [12–14]. The Moriya
procedure has been created for localized magnetic systems
and takes into account two magnetic sites i and j coupled
by a Hubbard-type Hamiltonian. The Lévy and Fert model
is more appropriate for itinerant systems and involves an
additional third site l mediating the DMI via conducting
electrons. In this model,

D⃗ijlðR⃗li; R⃗lj; R⃗ijÞ ¼ −V1

sin½kFðjR⃗lij þ jR⃗ljj þ jR⃗ijjÞ þ ðπ=10ÞZd�ðR⃗li · R⃗ljÞðR⃗li × R⃗ljÞ
jR⃗lij3jR⃗ljj3jR⃗ijj

; ð1Þ

where R⃗li, R⃗lj, and R⃗ij are the distance vectors
between corresponding sites. The parameter V1 ¼
½ð135πÞ=32�½ðλdΓ2Þ=ðE2

Fk
3
FÞ� sin½ðπ=10ÞZd� refers to the

material specific quantity defining the DMI strength. with
kF and EF the Fermi wave vector and energy, respectively,
λd is the spin-orbit coupling parameter, Γ the interaction
parameter between the localized spins and the spins of
conduction electrons, and Zd the number of d electrons.
Symmetry rules always predict a correct orientation

of D⃗. The same is true for the three-sites model in
full-symmetry systems. For systems of reduced symmetry,

like chains at interfaces, however, only an easy plane rather
than an exact direction of D⃗ can be derived from the two-
sites model [15], and results of the three-sites model might
also differ from ab initio results [12]. Nonetheless, it is
broadly accepted that for ultrathin films the Lévy-Fert model
provides a sound basis for studies of the spin ordering at the
interfaces because a majority of experimental 4d=3d, 5d=3d
interfaces or their alloys belong to the class of itinerant
systems with large and complicated unit cells.
The typical strength of D⃗ijl at interfaces lies between 0.1

and 2 meV [16–19], which corresponds to the thermal
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energy of several tens of kelvin. To enhance the DMI in
view of room temperature applications, multilayers of
ferromagnetic (FM) and nonmagnetic (NM) metals
..NM1-FM-NM2.. have been proposed [17,20,21]. In these
multilayers a strong intralayer and interlayer Rudermann-
Kittel-Kasuya-Yoshida (RKKY) coupling was considered,
while the DMI was understood to appear within the
NM-FM interfaces only. The RKKY coupling ensures
collective magnetic behavior of all FM layers. Hence, if
the DMI at all interfaces have identical direction, they can
be added to enhance the total DMI so that the complete
stack exhibits collective behavior. The interlayer DMI
across a NM spacer has up to now not been addressed
despite the fact that NM atoms or impurities within the NM
layer might play a role via the “third site” coupling of
magnetic layers. The reason that the interlayer DMI has not
been considered yet is, probably, the strong decrease of the
DMI with the distance between interacting and mediating
sites as shown in Refs. [13,22] and a cancellation of DM
vectors for certain symmetries. If, however, the DMI across
a spacer exists, different physical scenarios might develop:
if the interlayer DMI is supported by the RKKY interlayer
coupling, it might further enhance the effective DMI, which
could be most relevant for future technological break-
throughs; if the interlayer DMI competes with the RKKY
interlayer coupling, some unexpected phenomena like
intrinsic separation of columnar skyrmions, bias effects,
or three-dimensional frustration might emerge, which
would enrich the landscape of possible spin structures,
but might also complicate envisioned application scenarios.
In this study, we employ analytical and atomistic

Monte Carlo (MC) calculations to investigate the existence
and potential properties of DMI coupling between two FM
layers across a nonmagnetic spacer. We find that interlayer
DMI exists for many microscopic geometries. Despite the
weakness of interlayer DMI per atomic bond, it can induce
chiral coupling between FM layers, because the total
interlayer DM energy creates a sizable energy barrier
between macroscopic configurations with different chiral-
ity. This coupling is not trivial and seeks to create a three-
dimensional spin spiral across the complete system.
Therefore, competition between the interlayer DMI and
other energy contributions opens a new class of frustrated
magnetic systems and can be used to enhance the effective
interfacial DMI or to create complex three-dimensional
magnetic structures.
In our calculations magnetic layers are represented by

monolayers of Heisenberg spins S⃗i at atomic positions R⃗i
(see Fig. 1). The two effective FM monolayers are
separated by a NM metallic layer. The distance between
the bottom FM layer and the NM layer is dNM. This NM
layer is assumed to contain a certain distribution of
impurity atoms at positions R⃗l, which can each mediate
a DMI between any two spins according to Eq. (1). This
sum is oscillating and, hence, nontrivial. However, for

typical dFM, the sine term is close to unity [23]. An effective
DM vector of a given ij atomic pair can be described by a
sum over all impurities l [3,22]:

D⃗eff
ij ¼

X

l

D⃗ijlðR⃗li; R⃗lj; R⃗ijÞ: ð2Þ

In many one-dimensional cases, individual D⃗ijl are sym-
metric with respect to any bond and thus add up to zero
[arrows in Fig. 1(a)] according to the Eq. (2). A simplest 1D
configuration, which is different from that of Fig. 1(a), is
displayed in Fig. 1(b). This geometry corresponds to the
(11̄00) plane of a hcp structure [Fig. 1(d)] and impurities
are shifted in the−y direction. Because of this shift, the D⃗ijl

vectors are not compensated anymore, and hence, D⃗eff
ij

becomes nonzero. Figure 1(c) shows strength of D⃗eff
injnþ1

according to the geometry shown in Fig. 1(b) as a function
of the number of considered l atoms denoted by the
corresponding cutoff radius rc ¼ na with a being the
distance between neighboring l atoms. It shows that
jD⃗eff

ij j is maximal (≈ 0.231V1) if only nearest-neighboring
impurities are considered, but its value only changes very
modestly (to ≈ 0.229V1) if further neighbors are taken into

(a)

(c) (d)

(b)

FIG. 1. Microscopic interlayer DM vectors in a trilayer cross-
ection. (a),(b) Contributions to the D⃗ij (arrows) due to mediating

NM sites to the right D⃗right
ij and to the left D⃗left

ij from the bond
(green triangles). In (a), magnetic (blue spheres) and nonmag-
netic (gray spheres) atoms lie in the same plane and D⃗left

ij ¼
−D⃗right

ij leading to Deff
ij ¼ 0. In (b), the NM atoms are shifted

along the y axis corresponding to a cross section of a hcp stacking
shown in (d). Because of the shift, Deff

ij ≠ 0. (c) Effective D⃗eff
ij

for a chain with geometry (b) dependent on the number n of
mediating NM atoms (rc ¼ an). The inset displays the depend-
ency of Deff

ij as a function of the NM atom chain location along
the z axis (dNM) for a given dFM and rc ¼ 15a. (d) Cross section
of a hcp stacking scenario.
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account. The dependence jD⃗eff
ij j ¼ fðdNMÞ [see inset of

Fig. 1(c)] shows the variation of jD⃗eff
ij j with the position of

the NM layer along the z axis. The calculated D⃗eff
ij for a

complete hcp unit cell are shown in Figs. 2(a) and 2(b).
To calculate the total DM energy for an FM-NM-FM

trilayer with hcp stacking [see Figs. 2(a) and 2(b)], we use
the standard expression:

EDM ¼
X

ij

D⃗eff
ij · ðS⃗i × S⃗jÞ: ð3Þ

First, we analyze EDM for the case in which FM1 and
FM2 are each characterized by a perfectly aligned ferro-
magnetic state, but allowed to have any orientation with
respect to one another. Because in this case the spin cross

product is identical and constant for all pairs, the DM energy
per site is

Ei
DM ¼ ðS⃗i × S⃗jÞ ·

X

j

D⃗eff
ij : ð4Þ

While individual D⃗eff
ij are nonvanishing, their sum

P
j D⃗

eff
ij

vanishes, because all D⃗eff
ij for a site i in a hexagon cancel out,

as can be seen in Figs. 2(a) and 2(b). In other words, EDM

cannot be minimized even if nonzero D⃗eff
ij exist. However, if

magnetization configurations exhibit deviations from perfect
ferromagnetic alignment, the spin cross product cannot be
taken out of the sum and indices of the two vectors cannot be
separated. Hence, Eq. (3) cannot be converted into the
simple form of Eq. (4). Instead, spin and distance variables
become mixed and the total Ei

DMI might become nonzero.
To illustrate this we conduct a simplified analytical

minimization of the total DM energy calculated on the
basis of Eq. (3) with respect to some particular noncollinear
magnetic states. For this, we assume that azimuthal spin
angles φi within each FM layer are identical, while φFM1

i
and φFM2

i can take any values. We furthermore assume row-
wise up-down deviations of identical magnitude �δθ of
spins from θ ¼ π=2, as visualized in Figs. 2(c) and 2(d). We
have, however, distinguished between in-phase (up-up,
down-down) and antiphase (up-down, down-up) polar
oscillations. By applying these constraints we simplify
the problem and reduce the system to having two state
variables (δθ and dφ ¼ φFM2

i − φFM1
i ) only. Figures 2(e)

and 2(f) show the analytically calculated interlayer EDM as
a function of dφ and δθ for these two sequences. The DM
energy is minimized by δθ ¼ π=4 and dφ ¼ þ3π=2
(¼ −π=2) for the in-phase and by δθ ¼ π=4 and dφ ¼
þπ=2 for the antiphase sequence [see Figs. 2(c) and 2(d)].
Hence, by considering only the interlayer DM energy term,
and despite the fact that we constrain solution space, we
find magnetization states that exhibit a net ferromagnetic
moment in each of the two FM layers while achieving a net
reduction of the DM energy upon rotating the two layer
magnetizations with respect to each other following a
preferred helicity. This constitues a DMI interlayer cou-
pling effect.
For the more comprehensive understanding of interlayer

DMI coupling, we used Monte Carlo simulations. Samples
with lateral dimensions of up to 30a × 30a with periodic
and open boundaries have been considered. We use the hcp
stacking presented in Fig. 1(d). The magnetic Hamiltonian,

H ¼ −
X

hiji
Jintraij ðS⃗i · S⃗jÞ þ Ki

xy

X

i

ðSzi Þ2 −
X

hiji
D⃗eff

ij

· ðS⃗i × S⃗jÞ; ð5Þ
includes ferromagnetic intralayer Heisenberg exchange
coupling Jintraij , interlayer DM interactions D⃗eff

ij [according
to Eq. (2)], as well as an easy-plane Ki

xy anisotropy to
mimic magnetostatic effects. First, we set to zero all

(a)

(c)

(e) (f)

(d)

(b)

FIG. 2. Interlayer DM energy in a FM-NM-FM trilayer.
Calculated orientations of DM vectors in a hcp trilayer for
nearest-neighboring mediating atoms: (a) side view and (b) top
view. Triangles define the ijl planes, dark spheres show magnetic
atoms, and light spheres correspond to mediating atoms. (c),(d)
Blue arrows represent magnetic moments. Energy minimized
azimuthal rotations [dφ ¼ þπ=2 in (c) and dφ ¼ −π=2 in (d)] of
the top FM layer with respect to the bottom FM layer for in-phase
(c) and antiphase (d) δθ magnetization oscillations in the top layer
(with respect to the bottom layer oscillations). (e),(f) Energy
landscape in the dφ; δθ phase space. The exemplary curve for
δθ ¼ þπ=4 in (e) defines the color code of (f).
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contributions except that of D⃗eff
ij calculated for each pair

using Eq. (3) (see Ref. [24]). The corresponding ground
state of the energy of hEDMi ≈ −0.82V1=atom is depicted
in Fig. 3(a). It is an antiferromagnetic (AFM) row-wise
ordering in both layers. Hereby, magnetization in one of
the layers is perpendicular to the film plane, while the
other is planar. The total state demonstrates clockwise
cycloidal spin spiral across both layers [dark path in
Fig. 3(a)] and clockwise cycloidal rotation between the
layers. Hence, unique chirality between the layers and a
unique AFM modulation within the layers define a unique
magnetic chirality across the layers. This nontrivial struc-
ture is different from a typically one-dimensional bulk
spin spiral with perfect FM order in each plane. Next,
we add FM intralayer exchange interaction. For dominating
Deff

ij =J
intra
ij > 1.4, the ground state remains the same, while

for weaker Deff
ij =J

intra
ij values the AFM stripes broaden and

acquire noncollinearity, which is a necessary condition for
nonvanishing interlayer coupling [Fig. 3(b)].
One of the key purposes of our study is to investigate

whether the interlayer DMI can occur and cause chirality in
the in-plane multilayers. To mimic these structures with
dominating intralayer Heisenberg exchange and force their
magnetization into the film plane, we add an easy-plane
anisotropy and use parameters typical for Co-based alloys
[25]: Jintraij ¼ 10 meV per atomic bond, Deff

ij ≈ 0.025Jintraij ,

and shape anisotropy Ktop
xy ¼ 0.15Jintraij . An additional small

uniaxial in-plane anisotropy in the bottom plane Kbot
½1̄ 1̄ 20�

gives a preferential in-plane orientation to make the
resulting magnetic state more stable and, thus, the study
more transparent overall. Typical stable magnetic states are
analyzed in Figs. 3(b)–3(d). Net in-plane magnetization in
both layers is close to unity, while Sz varies between þ0.1
and −0.1. The MC ground state obtained after slow cooling
from a random initial configuration with open boundary
conditions [24] is shown in the bottom inset of Fig. 3(b).
We find a helicoidal rotation of the two FM layers, which
indicates interlayer DM coupling.
To clarify the physical grounds of this chirality, we have

performed additional computations. Specifically, we started
MC simulations using perfect in-plane ferromagnetic states
in each layer making an angle dφ with respect to one
another as initial configuration and relaxed these states at
low temperature (kT < Deff

ij ) until the DM energy started to
oscillate around the minimum mean value associated with
this macroscopic magnetization orientation. Hereby, azi-
muthal spin angles were fixed, while polar angles were free
to relax. The lateral spin structure acquired out-of-plane
modulations leading to DM energy lowering in each case,
meaning that the data represent local energy minima that
are constrained by the net macroscopic orientation.
Obtained mean energies hEDMi for different dφ are plotted
in Fig. 3(c). One global and one local energy minima were
observed. The global energy minimum corresponds to the
clockwise π=2 rotation of the top layer with respect to the

bottom one, while the local energy minimum corresponds
to an anticlockwise rotation. The local minimum appears
due to the open boundaries. The out-of-plane modulation
[see Fig. 3(d)] always inherited the chirality across the
trilayer from the pure DM ground state [Fig. 3(a)]. For
instance, if the bottom layer is magnetized in the þy
direction (orange arrows), the top layer acquires an up state
with decreasing its vertical component towards the sample
rim (down-up-down) in conjunction with its net orientation
to the left; if the bottom layer is oriented along the −y axis
(green arrows), the modulation and net orientation of the
top layer is reversed. Hence, the interlayer DMI for in-plane
magnetic bilayers with dominating exchange interactions
can lead to a unique interlayer chirality combined with
specific and associated Sz modulation: the change of the

(a)

(c) (d)

(b)

FIG. 3. Ground states of trilayers with interlayer DM
interaction from MC simulations. (a) Unit cell of stable MC
low-temperature (kBT ¼ 0.001Jintraij ) configuration for dominat-

ing interlayer DM (jD⃗eff
ij j > Jintraij ). Cycloidal spin spirals across

the trilayer (dark dashed line) and along the z axis are formed.
(b) Top view of the magnetic structure for Deff

ij =J
intra
ij ≈ 1.4

(V1=Jintraij ¼ 9.7) with the same color scale (blue and red
correspond to opposite out-of-plane magnetization, while green
and orange correspond to opposite in-plane magnetization) and
realistic caseDeff

ij =J
intra
ij ≈ 0.15. In the last case both layers are in-

plane magnetized (cyan and orange spins have orthogonal
orientation). (c) Mean interlayer DM energy achieved in MC
simulations for net in-plane ferromagnetic states in each layer
making an angle dφ with respect to one another. Large arrows
schematize MC states at the energy minimum. Direction gives
net in-plane orientation, color gives an out-of-plane contrast.
(d) Stable MC low-temperature (kBT ¼ 0.001Jintraij ) configura-
tions of the top layer for Deff

ij =J
intra
ij ≈ 0.2, and Ktop

xy ¼ 0.15Jintraij

for dφ ¼ þπ=2. Arrows show net in-plane orientation, while
colors show the out-of-plane magnetic contrast.
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sign in chirality requires a sign change in the phase of out-
of-plane modulations and vice versa.
The strength of the interlayer DM energy in planar

bilayers is, according to our calculations, of the order of
10−2Jij per atom. While the interlayer DM cannot compete
with strong Heisenberg exchange at the atomic scale, it can
define the energy barrier between two global configurations
with different relative magnetization orientations of individ-
ual layers because it scales with the sample size. Specifically,
this energy barrier is given by the total hEinter

DM i ≈ Jij in a
sample consisting of 2 × 103 spins for our specific boundary
conditions and, therefore, can shape the resulting equilib-
rium state. We expect an important impact of this interlayer
DMI causing three-dimensional chirality of magnetic multi-
layers like Fe=Cr=Fe [26], Co=Cu=Co [27], Co=Ru=Co
[28], Fe=Mo=Fe [29], and related Co or Fe alloys like
Co=Pt=CoFeB or CoFeB=Ru=CoFeB [20,30]. The inter-
layer DMI is probably responsible for the spin canting in
Fig. 3 of Ref. [31]. The strength of the resulting interlayer
DMI should be controllable by means of the thickness and
atomic structure of the NM layer.
The main conclusion of this investigation is that in

addition to the now well-explored interfacial DMI, magnetic
layers can be strongly coupled by means of a so-far
neglected interlayer DM interaction across a mediating layer.
The driving mechanism of this interlayer DM coupling is the
formation of a global chiral structure across magnetic
multilayers in all spatial directions (in plane and out of
plane), which is significantly different from a one-dimen-
sional bulk spin spiral. In ferromagnetic systems, a given
phase of microscopic deviations from collinearity defines the
sign of the interlayer chirality. Our findings open completely
new perspectives for enhancement and/or manipulation of
the total DM interaction and magnetic structuring in mag-
netic multilayers because the interlayer DMI might compete
with the interfacial DMI and the oscillatory interlayer
exchange coupling often present in multilayers. This com-
petition might lead to novel phenomena like chiral exchange
bias [32]. The microscopic characteristics of this interaction
depend on the lattice geometry of FM-NM-FM stacks, on the
strength of the spin-orbit coupling parameter V1, and on the
lateral structure of the films.
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