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Redox-based memristive devices are among the alternatives for the next generation of non volatile
memories, but also candidates to emulate the behavior of synapses in neuromorphic computing de-
vices. It is nowadays well established that the motion of oxygen vacancies (OV) at the nanoscale
is the key mechanism to reversibly switch metal/insulator/metal structures from insulating to con-
ducting, i.e. to accomplish the resistive switching effect.

The control of OV dynamics has a direct effect on the resistance changes, and therefore on different
figures of memristive devices, such as switching speed, retention, endurance or energy consumption.
Advances in this direction demand not only experimental techniques that allow for measurements of
OV dynamics, but also of theoretical studies that shed light on the involved mechanisms. Along this
goal, we analize the OV dynamics in redox interfaces formed when an oxidizable metallic electrode
is in contact with the insulating oxide. We show how the transfer of OV can be manipulated by
using different electrical stimuli protocols to optimize device figures such as the ON/OFF ratio or
the energy dissipation linked to the writing process. Analytical expressions for attained resistance
values, including the high and low resistance states are derived in terms of total transferred OV in
a nanoscale region of the interface. Our predictions are validated with experiments performed in
Ti/La1/3Ca2/3MnO3 redox memristive devices.

I. INTRODUCTION

Resistance random access memory (ReRAM) devices
have emerged as one of the main alternatives to current
flash memory technologies. Besides their potential ap-
plication in the field of non-volatile memories, they have
been also tested as logic devices1, and more recently, in
the emergent field of neuromorphics2.

The physical phenomenon behind ReRAMs is the so-
called Resistive Switching (RS) effect, which is the re-
versible and non-volatile change of the resistance of a
metal/insulator/metal structure upon the application of
electrical stimulus3–5.

The RS has been ubiquitously found in simple and
complex oxides based devices and, in particular, in man-
ganese oxides known as manganites6 . In these com-
pounds the switching is usually of bipolar type, which
requires opposite polarities for the electrical stimuli to
achieve both the SET (high to low resistance, HR→LR)
and RESET (low to high resistance, LR → HR) transi-
tions.

It was recently shown that when oxidizable metals such
as Ti or Al are used as electrodes, a thin oxide layer
(TiOx or AlOx) is naturally formed at the interface be-
tween the metal electrode and the insulating oxide. In
particular, in the case of Ti/LCMO(PCMO)7, the man-
ganite is spontaneously reduced after the deposition of
Ti. This results in a mixed interface TiOx / LCMO3−x
(PCMO3−x) in which the TiOx layer behaves as a n-type
semiconductor and is in contact with the p-type reduced
manganite, forming a n-p diode. In these samples, the

RS behavior has been related to a redox process involv-
ing the transfer of oxygen ions through the n-p layer9,10,
while the other interfaces behave as ohmic11,12. We have
recently shown that the redox process is activated after
the n-p diode is polarized in direct mode, or in inverse
mode above breakdown13.

The Voltage Enhanced Oxygen Vacancies drift
(VEOV) model was originally developed to explain the
RS behaviour in single manganites samples14 and it
was further extended to analyse binary oxides based
devices15. It has been extensively tested in RS exper-
iments with several devices of the type M1/Oxide/M2,
with M1 and M2 metallic electrodes (like Pt, Au, Cu,
Al), and oxides compounds ranging from manganites
(PCMO, LCMO) and cuprates (YBCO), to binary ox-
ides like TiO2

14–19.

Recently, the VEOV model has been also adapted
to mimic the RS behavior in Ti/LCMO/Pt samples,
where the mixed TiOx/LCMO3−x interface dominates
the memristive behavior of the device as a consequence
of the redox process already described13.

With quite a few exceptions18,20,21 most of the theo-
retical studies disregard the connection between OV dy-
namics and the manipulation of the attained resistance
states. The ability to reversibly control the concentration
and profile of OV should have a straightforward impact
on the resistance changes, allowing the improvement of
the performance of practical devices. This can lead, for
example, to the optimization of switching speeds or to
the minimization of the energy consumption for the writ-
ing process. Advances in this direction demand not only
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experimental techniques that allow for measurements of
OV dynamics23–25, but also of theoretical studies that
shed light on the involved mechanisms. Along this goal,
here we perform a systematic analysis of the dynamics
of OV in redox interfaces, and their response to different
protocols and stimuli. We show the modelling to predict
how the electrical stimuli can be manipulated to control
OV dynamics and optimize memristive figures such the
ON/OFF ratio or the energy consumption linked to the
RESET process.

In addition, we derive analytical expressions for the
attained resistance values in terms of the total amount
of OV transferred along the interface and as a function
of the applied voltage. This enables the reconstruction of
the R vs V resistance hysteresis switching loops (HSL).

Our predictions are validated with experiments per-
formed on the Ti/LCMO interface, demonstrating the
capability of this kind of simulations to understand the
physics related to redox memristive processes, paving the
way to optimize the electrical response of practical de-
vices.

II. THE VEOV MODEL REVISITED FOR
MIXED REDOX INTERFACES

In order to be self contained and to clarify notation, we
describe here the main assumptions and equations of the
VEOV14,15 migration model here adapted for the study
of RS in the mixed interface TiOx/LCMO3−x

13.
The interface is the active region for the RS behavior,

and it is modelled as a 1D chain of N = Nl + Nr total
sites, where Nl sites are associated to the TiOx layer and
Nr sites to the LCMO3−x, respectively. The links phys-
ically represent small domains of nanoscopic dimensions
in both sub-oxides with an initial OV concentration that
might correspond to the pristine state (PS).

We characterize each domain i along the chain by its
resistivity ρi which is a function of the local OV density,
δi. An universal feature of oxides is that their resistivity
is dramatically affected by the precise oxygen stoichiom-
etry. LCMO is a complex oxide that behaves as a p-type
semiconductor in which OV disrupt the Mn-O-Mn bonds
with the concomitant increment of the resistivity. On
the other hand, TiOx, behave as n-type semiconductor
in which oxygen vacancies increment its conductivity. As
a consequence, we adopt for the first Nl domains asso-
ciated to the TiOx the (most simple) relation between
resistivity and OV density:

ρli = ρ0
l −Aiδi. (1)

where we define ρ0
l as the residual resistivity of the left

layer for negligible OV concentration (δi = 0). As the
model description is given in terms of OV, we conceive
the TiOx as an OV doped TiO2 and therefore ρ0

l corre-
sponds to the resistivity of TiO2, (i.e. x ∼ 2).

On the other hand, as the resistivity of the LCMO3−x
layer increases due to the presence of OV22 we define for
sites i = Nl + 1, N :

ρri = ρ0
r +Biδi, (2)

being ρ0
r the residual resistivity of the stoichiometric

LCMO. The coefficients, Ai and Bi are specific of each
layer (oxide) and can be taken either as constants or
smoothly dependent on the site position, without affect-
ing the qualitative behaviour of the simulated results.

The total resistance along the interface is computed as

R = c
∑N
i=1 ρi, with the scale factor taken for simplicity

c ≡ 1. Following Eqs.(1,2) we obtain

R =

Nl∑
i=1

ρli +

N∑
i=Nl+1

ρri ,

= Rs −
Nl∑
i=1

Aiδi +

N∑
i=Nl+1

Biδi, (3)

with Rs ≡ Nl ρ0
l +Nr ρ0

r the residual resistance of the
interface, which is assumed known.

Given an external stimulus (either a current I(t) or a
voltage V (t)) applied to the interface at time t, the OV
density at site i is updated for each simulation step ac-
cording to the rate probability pij = δi(1−δj) exp(−Vα+
∆Vi), for a transfer from site i to a nearest neighbor j= i
±1. Notice that pij is proportional to the OV present at
site i, and to the available concentration at the neighbour
site j 14. In order to restrict the dynamics of OV to the in-
terface region, we take p01 = p10 = pNN+1 = pN+1N = 0.

In the Arrhenius factor exp(−Vα + ∆Vi), ∆Vi is the
local potential drop at site i defined as ∆V i(t) = Vi(t)−
Vi−1(t) with Vi(t) = I(t)ρi = V (t)ρi/R. We denote Vα
the activation energy for vacancy diffusion in the absence
of external stimulus. All the energy scales are taken in
units of the thermal energy kBT and we consider Vα =
VA, for sites in the left layer (TiOx), and Vα = VB for
those in the right layer (LCMO3−x).

The numerical implementation starts with the input of
the initial OV profile along the interface, δi(0),∀i = 1..N .
Different electrical protocols can be employed. Accord-
ing to standard RS experiments, we chose the stimulus
V (t) as a linear ramp following the cycle 0 → Vm1 →
−Vm2 → 0 a.u. At each simulation time step tk we com-
pute the local voltage profile Vi(tk) and the local voltage
drops ∆V i(tk). Employing the probability rates pij we
obtain the transfers between nearest neighboring sites.
Afterwards the values δi(tk) are updated to a new set of
densities δi(tk+1), with which we compute, at time tk+1,
the local resistivities ρi(tk+1), the local voltage drops un-
der the applied voltage V (tk+1), and finally from Eq.(3)
the total resistance R(tk+1), to start the next simulation
step at tk+1.

The initial configuration of OV in the pristine state
(PS) has been taken consistently with the experimentally
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reported (low resistance) initial state9,13, for which the
non-stochiometric TiOx layer (x < 2) contributes with a
significant conductivity. The partial oxidation of Ti layer
is at expenses of the reduction of the thin LCMO layer
that becomes LCMO3−x. This redox process has been
clearly identified through spectroscopic characterization
by the Jülich group in Ref.9. Taking into account this
scenario, the initial OV density in the TiOx is such to
grant an appreciable conductivity to this layer. Addi-
tionally, as the resistivity of the LCMO3−x increases due
to the presence of OV, we chose an OV profile for the PS
that matches these requirements and compatible with the
(low resistance) initial state of the complete interface (see
Fig.1(b)).

FIG. 1: a) R vs V (HSL) obtained within the VEOV
model for the 1st and 2nd cycles of the voltage protocol

0→ Vm1 → −Vm2 → 0. In the simulations we take
Vm1 = |Vm2| = 1200 a.u. and

N = 90, Nl = 50, A = 750, B = 50, VA = 8.5, VB = 6.
The two latter values are chosen following Refs.15 and
26, which report OV diffusions barrier for TiOx (up to

2.5 eV) and LCMO (∼1.3 eV). Inset: Experimental
HSL for a single cycle of the voltage protocol, with
Vm1 = |Vm2| = 1.8V. The arrows indicate the

circulation. b) OV density profiles, δi, for different
resistance states indicated respectively in the HSL’s of

panel a). See text for details.

In Fig.1(a) we show a typical R vs V Hysteresis Switch-
ing Loop (HSL), obtained from the numerical simulations
with the VEOV model for a symmetric voltage ramp
i.e. Vm1 = |Vm2|. Two consecutive cycles are considered
in order to show the initial resistance (correspondent to
t=0, V=0) of the PS state, together with the slightly
erratic response of the begining of the 1st voltage cycle.

In the experiments reported in Refs.9 and 13, the RE-
SET process takes place for positive stimulus and it is
related to the transfer of OV (positive ions) from the
TiOx layer to the LCMO3−x layer, the first becoming

nearly stoichiometric (x ∼ 2) and thus highly resistive.
At the same time, OV at the LCMO3−x contribute to
increase the resistance. In Fig.1(b), the OV profile as-
sociated to the HR state of the 1st HSL is shown, in
complete agreement with the described behaviour.

The SET transition takes place for negative stimulus,
when the interface returns to a LR state. The associated
OV profile shown in Fig.1(b) corresponds to the LR state
after the completion of the 1st HSL. In this case OV
accumulate at the left side of the left interface, while for
initial PS, which indeed has a higher resistance value,
the density of OV is constant. Besides the initial erratic
behavior of the 1st HSL, the HR and LR states associated
to the next cycles of the voltage protocol become highly
repetitive and stable. As an example, we also show in
Fig.1(b) the OV configuration for the HR state of the
2nd HSL.

The inset of Fig1(a) shows an experimental HSL
recorded for the Ti/LCMO interface, for a complete cy-
cle of the applied voltage protocol. The similarity be-
tween the simulated and experimental HSL’s is remark-
able, demonstrating the ability of the VEOV model to
collect the physics of the memristive effect. Notice that
as the amount of transferred OV is controlled by the am-
plitudes of the electrical stimuli, different experimental
HSL can be obtained by tuning the voltage (or current)
excursions, as it was already discussed in Ref.13, where
details of the device fabrication can be also found.

III. RESISTANCE IN TERMS OF
TRANSFERRED OXYGEN VACANCIES

In this section we advance a step further and derive
analytical expressions for the resistance values cast in
terms of the transferred OV as a function of the applied
stimulus.

As in typical experiments, the external electrical stress
can be either voltage V (t) or current I(t). For the sake
of simplicity we consider voltage controlled experiments
following the aforementioned protocol, but the following
reasoning will be valid when the stimulus is I(t).

We start from the initial state, correspondent to the
OV configuration depicted in Fig.1 b), consistent with
the PS. Taking into account Eq.(3) we write

R(0) = Rs −Aal0 +B ar0, (4)

where Rs has been previously defined and we here denote
the left and right initial areas (total number of OV), as

al0 ≡
∑Nl
i=1 δi,0 and ar0 ≡

∑N
i=Nl+1 δi,0, respectively,

with δi(0) ≡ δi,0, the OV density at site i for the initial
state.

Positive voltages 0 < V ≤ Vm1, move OV (as positive
ions) from the left layer of the interface (TiOx) to the
right layer (LCMO3−x), as we have already described.
For each value of V (t) > 0 it is possible to compute the
number of transferred vacancies a+(V (t)). Taking into
account the conservation of the total number of OV, we
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define al+(V ) = al0−a+(V ) and ar+(V ) = ar0 +a+(V ).
In this way we can write:

R+(V ) = Rs −Aal+(V ) +B ar+(V )

= R(0) + (A+B) a+(V ), (5)

showing that the resistance R+(V ) for positive voltages
V (t) is determined by the transferred area a+(V ) and
sample specific parameters. As a+ increases, R+ attains
higher values and thus it might be expected that for a
sufficiently strong voltage VR ≤ Vm1, the RESET transi-
tion to the HR state takes places, i.e. R+(VR) ≡HR.

In the next section we will study the OV transfer pro-
cess in order to analyse different scenarios for the RESET
transition. An important issue that will be addressed is
whether the RESET takes place for a+(VR) = al0 (com-
plete transfer of the initial number of OV), or alterna-
tively for a+(VR) < al0.

For negative voltages, OV move from the right to left
side of the interface. Defining a−(V ) as the net trans-
ferred area for a (negative) voltage |V | ≤ Vm2, we can
write al−(V ) = al0 − a+(VR) + a−(V ) and ar−(V ) =
ar0 + a+(VR) − a−(V ), for the left and right interfaces,
respectively. For simplicity we have assumed that once
the RESET transition takes places for positive polarities
and until the reversal of the voltage polarity, the transfer
of vacancies from the right to the left interface is inhib-
ited. This assumption is consistent with the (almost)
flat shape of the HSL experimentally observed for this
range of voltages (see inset of Fig.1 a)). Thus we write
for |V | ≤ Vm2,

R−(V ) = Rs −Aal−(V ) +B ar−(V )

= R0 + (A+B)
{
a+(VR)− a−(V )

}
. (6)

In analogy with the previous description, we define the
SET transition for a negative voltage |VS | ≤ Vm2 with
an associated transferred area a−(VS). Therefore, from
Eq.(6), the low resistance LR state is R−(VS) = R0 +
(A+B) {a+(VR)− a−(VS)} ≡ LR.

We can proceed along for additional cycles of the ap-
plied voltage protocol, but as the systematics is essen-
tially the same as the one already detailed, we restrict
the explicit description to a single cycle.

From Eqs.(5) and (6) it is possible to reconstruct R for
a complete cycle of V (t), i.e. the HSL, once the trans-
ferred areas are determined.

Depending on the relation between a+(VR) and a−(VS)
different scenarios emerge for the LR state. In those cases
where a+(VR) = a−(VS), the attained LR state results
identical to the initial one, see Eq.(6). However in other

cases where a+(VR) S a−(VS) the LR S R0. These re-

sponses have been already observed in the experiment of
Ref.13 and give rise to close or open HSL after a complete
cycle of the voltage excursion.

Besides the formal simplicity of Eqs.(5) and (6), the
analytical determination of a+(V ) and a−(V ) is not a
trivial task. In the following we summarize the main
steps followed to obtain a+, and refer the readers to the

Appendix for further details. As V (t) is a known function
of the (discretized) elapsed time t ≡

∑
k tk, the total

transferred area can be written as a+(t) =
∑
k a

+(tk).

To simplify the notation, we denote a+k ≡ a+(tk). After
a lenghtly calculation, we can write (see Appendix):

a+k = a+Lk + a+NLk , (7)

where we define the linear and non linear contributions
respectively as:

a+Lk = CNlδNl(k) exp(I(k)ρNl(k))− CNl+1δNl+1(k)

exp(−I(k)ρNl+1(k)),

a+NLk = −δNl(k)δNl+1(k){−CNl+1 exp(−I(k)ρNl+1(k))

+CNl exp(I(k)ρNl(k)},
(8)

with I(k) = V (k)/R(k), following the adopted conven-
tion.

Notice that in the case of current controlled experi-
ments, in which I(k) is known, the above equations stress
that the transferred area a+k for the time interval tk is de-
termined in terms of the density of OV at the two fron-
tier sites of the interface, i.e. δNl(k) and δNl+1(k),
respectively. This is a nontrivial result, that could be
experimentally tested using OV imaging techniques23 in
current controlled experiments, and should contribute to
the design of optimized interfaces for RS experiments.

Equation(8) can be further simplified taking into ac-
count that the activation energies satisfy VA < VB , which
implies CNl >> CNl+1. Taking into account this approx-
imation, the obtained analytical estimates for a+k (see
Eq.(A12)) enable the determination of the transferred
areas as a function of the applied stimulus.

In the Appendix, we also derived estimates for a−k (see

Eq.(A17)) to compute the transferred area a− =
∑
k a

−
k

for the case of negative applied stimulus.
To give a concrete example, we consider protocols con-

trolled by the current for which the expressions for a+(I)
and a−(I) adquire its simplest form, due to the fact that
I(k), the current at each time step tk, is known. Figure
2 shows the analytical estimates for a+(I) and a−(I) ob-
tained for a current loop I(t)= 0 → Im1 → −Im2 → 0.
Notice that the convertion from transferred areas to re-
sistance values is trivial following equations analogous to
Eqs.(5) and (6), for the case of current control experi-
ments. Thus, the analytical reconstruction of the HSL,
R vs I, in terms of the applied stimulus is fully accom-
plished. The analytical estimates, that only consider the
OV at sites Nl and Nl + 1, result almost indistinguish-
able from the numerical values (see Fig.2) obtained with
the VEOV model. In this last case the complete OV
profile along the whole interface has to be updated at
each simulation step tk, which demands an appreciable
computational effort.

An important figure of merit is the HR/LR ratio which,
from Eqs.(5) and (6), can be expressed as:

RL−R0

RH −R0
=
a+(VR)− a−(VS)

a+(VR)
, (9)
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FIG. 2: Transferred area a+(I) (a−(I)) for a protocol
I(t)= 0→ Im1 → 0 (0→ −Im2 → 0). The circles
(squares) were obtained following the analytical

estimates Eq.(A12)) (Eq.(A17)). The diamond and
triangle symbols correspond to the numerical

calculations employing the VEOV model simulations.
We take Im1 = Im2 = 4a.u

taking as a reference value R0.
To give a further insight into the transfer area process,

in the next section we will analyze the dynamics of OV for
different electrical protocols. This will allow to determine
an optimal stimuli protocol, which shall be confirmed by
our experiments on the Ti/LCMO interface.

IV. DYNAMICS OF OXYGEN VACANCIES

Given the fact that the HR and LR states are essen-
tially determined by the areas associated to the OV trans-
ferred in the RESET and SET transitions respectively,
an interesting and quite unexplored aspect is related to
the sensitivity of these processes to the peculiarities of
the voltage protocol. Along this goal, in this section we
analyse the associated dynamics of OV for different ap-
plied stimulus. We concentrate in the RESET process
that take place for positive stimulus V (t), but the same
analysis can be performed for the SET process.

The starting point is the initial OV configuration,
which is shown in both top panels of Fig.3 labeled by
V=0. This OV distribution defines an initial area al0
on the left side of the interface, which we recall corre-
sponds to the TiOx layer. To analyse the time evolution
of this initial OV density profile, we consider two pos-
itive voltage excursions (ramp1 and ramp2) of a linear
ramp 0 < V ≤ Vm1, with Vm1 = 900 a.u., which differ
in the rising time Ti (T1 = 10 a.u and T2 = 225 a.u.),
respectively.

We focus on the evolution of the OV for the 2nd volt-

age cycle, to avoid the analysis of the initial transient in
the OV dynamics, which as we have already described,
manifests in an erratic behaviour of the 1st HSL (indeed
observed in the experiments).

In the top panels of Fig.3, we show snapshots of the
density profiles for different values of the voltages which
are selected to sample the evolutions. The associated
transferred areas a+(V ) are shown in the lower panels,
respectively.

An important outcome is that the duration of the
ramp Ti turns out to be a knob that controls whether
the transfer of OV is complete or not. Notice that for
ramp 1, the transferred area seems to saturate in a value
a+sat ∼ 0.035 < al0 = 0.05, before the completion of the
voltage excursion.

This implies that voltage amplitudes larger than V ∼
600 have not effect in transferring OV from the left to the
right side of the interface. In addition, a finite amount
of OV remains in the TiOx region, consistently with the
fact that the complet transfer is not achieved.

On the other hand, for the ramp 2 (right top panel
of Fig.3) the initial area is fully transferred, i.e. a+sat =
al0 = 0.05. Indeed this is attained for voltage values
lower than Vm1 (in the present case for V = 350, see the
OV profile in the right top panel).

From the plateau in each plot of a+ (lower panels) we
can define a saturated area value, a+sat. Doing this we
have a plausible criteria to estimate the reset voltage VR,
as the voltage obtained at the intersection between the
horizontal line correspondent to null transfer area with
the tangent line at the value a+sat/2. This is explicitly
sketched in both lower panels of Fig.3. The obtained
values of VR are in excellent agreement with the ones
extracted from the HSL in the VEOV model simulations.

In the present example the complete transfer of OV is
attained for ramp 2, with T2 > T1. We therefore can con-
clude that, for linear continous ramps, lower slopes
favour the complete transfer of OV from the left to right
side of the interface, once the amplitude of the ramp
Vm1 exceeds a critial voltage necessary to activate the
transfer. From the above analysis the onset of the RE-
SET transition is clearly identified with the “first arrival”
of the OV front to the right hand side of the interface
(LCMO3−x).

Next, we analyze the case of RESET process driven by
pulsed voltage ramps, which consist in a series of pulses
of increasing amplitude and time width ∆T . Consecu-
tive pulses are separated by ∆T intervals with no ap-
plied voltage, as it is shown in the inset of Fig. 4 b).
This type of voltage protocol is extensively used in the
RS experiments.

We systematically vary ∆T , leaving the total duration
of the ramp constant. In this way, shorter ∆T are asso-
ciated with ramps with higher number of pulses. Figures
4(a) and (b) display the corresponding R vs time and R
vs V associated to the RESET process, for different ∆T
shown in the legend.

We recall that larger transferred area a+(V ) implies
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FIG. 3: Top panels: Spanshots of the OV density profile
along the interface for different values of the applied
stimulus V(t), according to two protocols ramp1(left

panel) and ramp2 (right panel), defining a linear ramp
0 < V ≤ Vm1, with Vm1 = 900 a.u. and rising time
T1 = 10a.u (ramp1) and T2 = 225 a.u.(ramp2),

respectively. In dashed black line is the initial OV
profile for t = 0, V = 0, which gives an area al0 = 0.05.
Lower panels: transferred area a+ for different voltage
values shown in the upper panels legend. The RESET

voltages VR are estimated following the criteria
explained in the text.

larger renmant resistance as we deduced in Eq.(5). As
it can be observed from the figure, the transferred area
is maximized for the shortest pulses, indicating that the
OFF/ON (HR/LR) ratio is optimized by accumulating a
higher amount of short pulses rather than a lower amount
of wider ones. This non trivial result is experimentally
confirmed for the Ti/LCMO interface, as shown in Figs
4(c) and (d), which display several RESET processes for
voltage pulsed ramps with a fixed total duration of 2.88
s and different ∆T , ranging between 2-10 ms. It is evi-
dent that a higher HR final state is achieved for shorter
(2ms) pulses, confirming the prediction derived from the
simulations. In addition the qualitative agreement with
the numerical predictions is remarkable.

Finally, we address the study of the RESET process
for trains of rectangular pulses differing in the time-
widths ∆T and amplitudes V0, but keeping the product
V0 × ∆T = cte. We start by an OV profile defining an
initial area al0 = 0.05. The RESET process is considered
as completed when the initial area is fully transferred (we
choose the amplitudes V0 in order to satisfy this require-
ment).

The simulated evolution of R vs time, for the differ-
ent trains is displayed in Fig.5(a). It is found that the
number of pulses needed to achieve the RESET changes
in a non-monotonic way with the amplitude V0. This

FIG. 4: Left panels: Simulations with VEOV model. a)
R (R+) vs time and b) R(R+) vs V. Both plots are for
a series of pulsed protocols following a linear ramp of

amplitude Vm = 900 a.u. but differing in the pulse
duration ∆T , as shown in the inset of panel a). A

representative ramp is shown in the inset of panel b).
Right panels: Experiments. c) Renmant resistance R vs

time and d) R vs V, both according to different
experimental protocols differing in the pulse duration.

information is indexed in Fig. 5(b), which also displays
the electrical energy necessary to complete the RESET
process as a function of V0 for different number of pulses
labeled by the numbers. These energies were calculated
as U = V 2

0

∑
i ∆T i/Ri, with Ri is the attained resistance

value after the application of the i− th pulse.

From this analysis we conclude that there is {∆T , V0}
pair which minimizes the RESET energy. This was in-
deed verified experimentally for the Ti/LCMO interface,
as it is shown in Figs. 5(c) and (d). Pulse trains with V0
and ∆T ranging between [1.8-3]V and [1-1.75 ]ms were
tested with the product ∆T × V0 =3 V ms. In the ex-
periment we consider the RESET process as completed,
when the relative resistance change after the last applied
pulse is below 5%. Again, the number of pulses necessary
to complete the RESET process display a non-monotonic
dependence with V0. To estimate the injected energy dur-
ing each pulse, we assumed that the resistance increases
linearly to its final value during the application of the
pulse.

Figure 5 d) mimics remarkably well the simulated data
in Fig.5 b). It is found that the RESET energy is min-
imized for ∆T = 1.4ms and V0 =2.1V, being neces-
sary in this case a single pulse to complete the process.
For higher voltages, the RESET process can be achieved
also with a single pulse but higher energy is required.
For lower voltages, it is necessary to accumulate several
pulses and therefore the final energy increases.
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The present analysis clearly shows that the VEOV sim-
ulations appear as a powerful tool to analyze oxygen va-
cancies dynamics in redox memristive systems and pre-
dict optimum writing protocols to increase the efficieny
of practical devices.

FIG. 5: Top panels: Simulations. a) R vs time for
different trains of rectangular pulses satisfying

V0 ×∆T = cte. See text for details. b) Electrical energy
injected into the system for a complete RESET process.

Lower panels: Experiment: c) R vs time for different
trains of pulses indicated in the legend. d)Electrical

energy injected into the system for a complete RESET
process. Panels b) and d) have indexed the number of

pulses needed for a complete RESET.

V. CONCLUSIONS

In summary, we have thoroughly addressed the OV
dynamics in redox p-n interfaces by using un updated
version of the VEOV model. The simulations allow to
predict the optimum write protocols to control and en-
large the ON/OFF ratio. Our results are relevant not
only for memories optimization, but also for neuromor-
phic computing applications, as the presence of multilevel
resistance states allows mimicking the adaptable synaptic
weight of brain synapses27.

In addtion we found the optimum stimuli protocol that
minimizes the energy consumption linked to the RE-
SET process. This is also important for the optimiza-
tion of neuromorphic computing devices aiming to emu-
late the highly efficient energy comsumption of biological
systems28.

The numerical predictions were fully validated with
experiments on the Ti/LCMO memristive interface,
demonstrating the power of this type of phenomenolog-
ical modelling to predict and optimize the behavior of
practical memristive devices.
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Appendix A: Analytical estimates for the
transferred areas

In this Appendix we derive the expressions for the
transferred area a+k from the left to the right side of the
interface, in terms of the linear and nonlinear contribu-
tions, Eq.(8).

We start by defining the rate of OV variation between
neighbours sites i− 1, i and i+ 1 as:

∆i(k) =(pi−1,i(k) + pi+1,i(k))−
− (pi,i−1(k) + pi,i+1(k)),

(A1)

with

pi,j(k) = Ciδi(k)(1− δj(k)) exp(I(k)ρi(k)) (A2)

and Ci = exp (−Vα), already introduced in Sec.II of the
main text. In the following we consider CNl = exp (−VA)
and CNl+1 = exp−(VB).

Employing Eq.(A1), we write the transferred area (to-
tal number of transferred OV) a+k as:

a+k ≡
N∑

i=Nl+1

∆i(k) =

N∑
i=Nl+1

∆L
i (k) +

N∑
i=Nl+1

∆NL
i (k) =

= a+Lk + a+NLk ,

(A3)

where we have defined:

∆L
i (k) =Ci−1δi−1(k) exp(I(k)ρi−1)+

+ Ci+1δi+1(k) exp(−I(k)ρi+1)−
− Ci[δi(k) exp(−I(k)ρi) + δi(k) exp(I(k)ρi)]

(A4)

and

∆iNL(k) =− Ci−1δi−1(k)δi exp(I(k)ρi−1)−
− Ci+1δi+1(k)δi(k) exp(−I(k)ρi+1)

+ Ci[δi(k)δi−1(k) exp(−I(k)ρi)+

+ δi(k)δi+1(k) exp(I(k)ρi)].

(A5)

Performing the sumations in Eq.(A3) and accounting
for the boundary condition CN+1 = 0, we get

N∑
i=Nl+1

∆L
i (k) =CNlδNl(k) exp(I(k)ρNl)−

− CNl+1δNl+1(k) exp(−I(k)ρNl+1)

(A6)

and

N∑
i=Nl+1

∆NL
i (k) =− δNl(k)δNl+1(k)(CNl

exp(I(k)ρNl
)−

− CNl+1 exp(−I(k)ρNl+1)).

(A7)

The linear term a+Lk has been written as the sum of
two contributions,

a+Lk ≡ P (k)−Q(k), (A8)

defined as:

P (k) =CNlδNl(k) exp(I(k)ρNl(k)),

Q(k) =CNl+1δNl+1(k) exp(−I(k)ρNl+1(k)).
(A9)

Analogously, we write the nonlinear term as:

a+NLk ≡ S(k)− T (k), (A10)

with

S(k) =CNl+1δNl(k)δNl+1(k) exp(−I(k)ρNl+1(k)),

T (k) =CNlδNl(k)δNl+1(k) exp(I(k)ρNl(k))).

(A11)
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Notice that for current controlled experiments in which
the current I(k) is known by input, the tansferred areas
at each time interval tk only depend on OV densities and
resistivities at the sites Nl and Nl + 1, respectively.

As we already mentioned in Sec.II, the activation ener-
gies for OV diffusion satisfy VA < VB and thus CNl+1 <<
CNl. Therefore, we can safely approximate:

a+k = a+Lk + a+NLk ≈ P (k)− T (k). (A12)

This equation can be updated for the next time interval
tk+1 employing

δi(k + 1) = δi(k) + ∆i(k), (A13)

for i = Nl − 1, Nl and Nl + 1, respectively.

From Eq.(A2) and Eq.(A1) we write after a straight-
forward algebra:

∆Nl(k) = CNlδNl(k)[−2 cosh(I(k)ρl(k))+

+ δNl+1(k) exp(I(k)ρNl(k))+

+ δNl−1(k) exp(−I(k)ρNl(k))]+

+ (1− δNl(k))

[CNl+1δNl+1(k) exp(−I(k)ρNl+1(k))+

+ CNl−1δNl−1(k) exp(I(k)ρNl−1(k))].

(A14)

Performing the sustitution k → k + 1, replacing
Eq.(A13) in P (k) (Eq.(A9)), and taking into account
Eq.(1) in the main text, we obtain:

P (k + 1) =CNl[δNl(k) + ∆Nl(k)]

exp
(
I(k + 1)(ρl0 −A(δNl(k) + ∆Nl(k)

)
.

(A15)

In a similar way we derive, after updating T (k) in
Eq.(A11),

T (k + 1) =CNl[δNl(k) + ∆Nl(k)][(δNl+1(k) + ∆Nl+1(k)]

exp
(
I(k + 1)(ρl0 −A(δNl(k) + ∆Nl(k))

)
.

(A16)

Employing these two last equations we compute
a+k+1 ≈ P (k + 1)− T (k + 1).

Following the described prescription iteratively, the to-
tal transferred area a+ after an elapsed time t+ =

∑
k tk,

can be computed under the present assumptions.

The same procedure can be applied to compute a−

for negative electrical estimulus. Assuming that the cur-
rent protocol 0 → Im1 → 0 is completed for a time
T+ =

∑K+

k tk, the initial condition for the negative cur-
rent protocol 0→ −Im2 → 0 should be taken as the OV
profile at time T+, i.e. δi(K+).

To avoid repetition we give below the final expression,
valid for k > K+:

a−k =CNl
δNl

(k) exp(I(k)ρNl
)−

− CNl+1δNl+1(k) exp(−I(k)ρNl+1)+

+ δNl
(k)δNl+1(k)(CNl+1 exp(−I(k)ρNl+1)−

− CNl
exp(I(k))ρNl

)).

(A17)
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