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The parameters of the triangular domain wall network in bilayer graphene with a simultaneously
twisted and biaxially stretched bottom layer are studied using the two-chain Frenkel-Kontorova
model. It is demonstrated that if the graphene layers are free to rotate, they prefer to stay co-
aligned upon stretching the bottom layer and the regular triangular network of tensile domain walls
is formed upon the commensurate-incommensurate phase transition. If the angle between the layers
is fixed, the regular triangular network of shear domain walls is observed at zero elongation of
the bottom layer. Upon stretching the bottom layer, however, the domain walls transform into
the tensile ones and the size of the commensurate domains decreases. We also show that the
parameters of the isosceles triangular domain wall network in twisted bilayer graphene under shear
strain can be determined through purely geometrical considerations. Experimental analysis of the
orientation of domain walls and period of the triangular network would, on the one hand, contribute
to understanding of the interlayer interaction of graphene layers, and, on the other hand, serve for
detection of relative strains and rotation between the layers. Vice versa external strains can be used
to control the parameters of the triangular domain wall network and, therefore, electronic properties
of twisted bilayer graphene.

I. INTRODUCTION

Stacking dislocations in bilayer graphene arising as
domain walls between commensurate domains with the
AB and BA stackings were initially predicted for the
case of uniaxial strain applied to one of the layers.1

Since then networks of domain walls separating com-
mensurate domains have been obsevered using various
experimental methods.2–11 The effect of domain walls on
electronic,7,10–24 magnetic6,24,25 and optical26 properties
of graphene has been studied. Unusual plasmon reflec-
tion at domain walls opens up possibilities to manipulate
two-dimensional plasmons.8 Topologically protected he-
lical states in domain wall networks of minimally twisted
bilayer graphene7,10,11,13,16,24 provide a new avenue for
applications in valleytronics16 (see also for review27).

In spite of the interesting electronic properties of
domain wall networks in minimally twisted bilayer
graphene and their possible applications, the energet-
ics and structure of such systems have been poorly
studied. The majority of the previous theoretical
works on the structure and energetics of domain walls
were devoted to isolated domain walls which do not
cross.1,3,4,28–31 The approach developed in these papers
allowed to predict the commensurate-incommensurate
phase transition32 related to the formation of the first
domain wall in two-dimensional bilayer systems with one
layer stretched uniaxially and another layer free, such
as bilayer graphene,1,29 bilayer boron nitride28,29 and
graphene-boron nitride heterostructure.30

Although it is in principle possible to study the struc-
ture of triangular domain wall networks by atomistic22,25

and multiscale33 simulations, the number of atoms in the
supercell grows rapidly with decreasing the angle of rel-
ative rotation of the layers. Consideration of twisted bi-

layer with the minimal relative rotation angle of about
0.2◦, such that the period of the network is an order
of magnitude greater than the domain wall width, has
been achieved so far using these methods22,33 and only
the case of pure relative rotation of the layers without
external strain has been addressed.

In most of the experiments,2–4,6,8,11 the sizes of the
commensurate domains are much greater than the do-
main walls width. Moreover, different structures of the
domain wall network are observed even within the same
sample.2,3,6,8 Therefore, there is a need of a model capa-
ble of describing the networks with large domains under
different external loads. It should be mentioned that lo-
cal motion of domain walls by the electric field of the
scanning tunneling microscope tip9 and by the action of
the atomic force microscope tip5 has been demonstrated
recently. Application of a strain to one of the layers can
open an alternative way to manipulate the structure of
domain wall networks.

It has been proposed lately34 that the energy and
structure of domain wall networks in bilayer graphene
with the domain size much greater than the domain wall
width can be described analytically within the two-chain
Frenkel-Kontorova model.35 However, only the case of
co-aligned layers with a one biaxially stretched layer has
been considered.34 Here we extend this approach to do-
main wall networks in bilayer graphene with a simulta-
neuosly twisted and biaxially stretched bottom layer.

In the following, we give the theory for domain walls
in bilayer graphene: approximation of the potential en-
ergy surface of interlayer interaction energy, model for
the local structure and energetics of isolated domain walls
and its extension for regular triangular domain networks.
Then we apply the extended model to analyze the charac-
teristics of the networks formed under biaxial stretching
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of the bottom layer in the cases of free and twisted upper
layers. In Section IV we briefly discuss the cases of com-
pression, bending and shear load. Finally the conclusions
are summarized.

II. THEORY

A. Interlayer Interaction Energy

The structure and energetics of domain wall net-
works in bilayer graphene are determined by the po-
tential energy surface of interlayer interaction energy
for co-aligned layers. Density functional theory (DFT)
calculations36–40 show that this potential energy surface,
i.e. the dependence of the interlayer interaction energy
on the relative in-plane displacement of the layers, can be
approximated using the first Fourier harmonics (Figure
1):

V (ux, uy) =V0

(
3

2
+ cos

(
2k0ux −

2π

3

)
− 2 cos

(
k0ux −

π

3

)
cos
(
k0uy

√
3
))

,

(1)

where k0 is expressed through the bond length l of
graphene as k0 = 2π/(3l) and ux and uy are relative
displacements of the layers in the armchair and zigzag di-
rections, respectively. Bilayer graphene has two energet-
ically degenerate but topologically inequivalent ground-
state stackings, AB and BA, in both of which half of the
atoms of the upper layer are on top of the centers of the
hexagons and the other half on top of the atoms of the
bottom layer. The relative displacement ~u = 0 in eq 1
corresponds to the AB stacking. The structure and en-
ergy of domain walls depend only on the relative values
of the interlayer interaction energy for different stackings
and the energy in eq 1 is also given with respect to the
AB (BA) stacking.

As seen from eq 1 and Figure 1, the straight path be-
tween two adjacent minima AB and BA corresponds to
the minimum energy path and the barrier to the dis-
placement between the minima is reached in the middle
of this path in the saddle-point (SP) stacking. The inter-
layer interaction energy grows fast upon deviation from
the AB–SP–BA route compared to changes in the elas-
tic energy of the layers. Therefore, the layers in domain
walls are displaced along such paths.1,2,29

The Burgers vector ~b of a domain wall is related to the
change ∆~u in the relative displacement of the layers in

the commensurate domains separated by this wall as ~b =
±∆~u. The Burgers vectors of domain walls in graphene
are thus aligned along the armchair directions and equal
in magnitude to the bond length, b = l. The angle β

between the Burgers vector ~b and normal to the domain
wall (Figure 2a) determines the character of the domain
wall, which can change from tensile for the walls aligned

in the zigzag direction (β = 0◦, Figure 2b) to shear for
the walls aligned in the armchair direction (β = 90◦,
Figure 2c).

It follows from eq 1 that the dependence of the in-
terlayer interaction energy on the displacement u of
graphene layers along the minimum energy path, which
corresponds to the variation of the interlayer interaction
energy across domain walls, can be written as

V (u) = Vmax

(
2 cos

(
k0u+

2π

3

)
+ 1

)2

, (2)

where Vmax = V0/2 is the barrier to relative sliding of
the layers. This quantity is the key parameter of the
Frenkel-Kontorova model describing the interlayer in-
teraction. Unfortunately, the magnitude of the barrier
Vmax is not known with certainty. Because of the diffi-
culty in description of long-range interactions in DFT,
the corresponding values from literature lie in the wide
range from 0.5 meV/atom to 2.1 meV/atom37,38,41–46 (in
meV per atom of the upper/adsorbed layer, see Sup-
porting Information). After comparison of a number of
properties of bilayer graphene, graphite and boron ni-
tride, such as shear and bulk moduli, shear mode fre-
quencies, etc. for various functionals corrected for van
der Waals interactions (PBE-D2, PBE-D3, PBED3(BJ),
PBE-TS, optPBE-vdW and vdW-DF2) with the experi-
mental data, we previously came to the conclusion that
the second version of the van der Waals density functional
(vdW-DF2)47 performs the best for the potential energy
surface of these materials.44 Using the vdW-DF2 func-
tional, we computed the barrier Vmax = 1.61 meV/atom.
Other exchange-correlation functionals also gave the re-
sults in the range of 1.55–1.62 meV/atom when the in-
terlayer spacing was fixed at the experimental one. The
close estimate of 1.7 meV/atom was obtained from the
experimental data on the shear mode frequencies in bi-
layer and few-layer graphene and graphite.36 However,
a larger value of 2.4 meV/atom was deduced from the
experimental measurements of dislocation widths of var-
ious domain walls.2 Based on these data, we assume that
the error of our vdW-DF2 value for the barrier can reach
40% and this is the main factor limiting the accuracy of
our predictions for single domain walls and domain wall
networks.

B. Isolated Domain Walls

To describe the energy and structure of domain walls
in bilayer graphene analytically, we use the two-chain
Frenkel-Kontorova model.1,28,29,34,35,48 In this model, it
is taken into account that both of the layers change
their structure to accomodate domain walls. We, nev-
ertheless, assume that the bilayer is supported2,3,5 and
neglect the out-of-plane buckling.3,4 Using the model,
domain walls in double-walled carbon nanotubes,35,48

bilayer graphene,1,29,49 boron nitride28 and graphene-
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FIG. 1. Approximation of the interlayer interaction energy
of bilayer graphene V as a function of the relative displace-
ments ux and uy of the layers along the armchair and zigzag
directions, respectively, according to eq 1. The interlayer in-
teraction energy V is measured with respect to the AB (BA)
stacking and divided by the barrier Vmax to relative sliding of
the layers, which corresponds to the relative energy of the SP
stacking. The relative displacements ux and uy are given in
units of the bond length l. The AB, BA, AA and SP stack-
ings and the boundaries of the region of the potential energy
surface spanned within a single dislocation node are indicated.

boron nitride heterostructure30 have been already inves-
tigated.

According to the two-chain Frenkel-Kontorova model,
the energy related to formation of a single domain wall
characterized by the angle β between the Burgers vector
and normal to the wall per unit length is given by28,29

∆W (β) =

+∞∫
−∞

{
1

4
K(β)

∣∣∣∣dudx

∣∣∣∣2 + V (u)

}
dx (3)

where coordinate x corresponds to the direction perpen-
dicular to the domain wall, V (u) is the interlayer inter-
action energy per unit area of the bilayer along the min-
imum energy path between adjacent AB and BA min-
ima given by eq 2 and K(β) = E cos2 β + G sin2 β de-
scribes the dependence of the elastic constant on the
shear and tensile character of the domain wall.28,29 Here
E = k/(1 − ν2) and G = k/2(1 + ν), where ν is the
Poisson’s ratio and k is the elastic constant under uni-
axial stress (determined by the Young’s modulus Y and
thickness of graphene layers h as k = Y h).

The condition δ∆W/δu = 0 corresponds to the optimal
relative displacement u(x) that minimizes the formation
energy of the domain wall in eq 3. Integration of this

FIG. 2. Schemes of regular triangular domain wall networks
(black lines) in bilayer graphene: (a) general case, (b) tensile
domain walls and (c) shear domain walls. The size L of com-
mensurate domains, changes ∆~u in the relative displacement
of the layers in adjacent commensurate domains (equal to the

Burgers vectors ~b of the domain walls up to a sign), compo-
nents ∆ux and ∆uy of one of these vectors across (along the
armchair direction) and along (along the zigzag direction) the
domain wall, respectively, angles β between the vectors ∆~u
and normals to the domain walls and angle φ of the relative
rotation of the layers are indicated.

equation gives

1

4
K(β)

∣∣∣∣dudx

∣∣∣∣2 = V (u). (4)

The solution u(x) of this equation is a soliton with a
virtually constant slope near the center of the domain
wall at x = 0.1,28,29,34,35,48 Correspondingly, the charac-
teristic width of domain walls referred to as a dislocation
width can be introduced as

lD(β) = l

∣∣∣∣dudx

∣∣∣∣−1
x=0

=
l

2

√
K(β)

Vmax
. (5)

From eqs 2, 3 and 4 it follows that the formation energy
of domain walls per unit length is given by

∆W (β) =
√
K(β)

∫ l

0

√
V (u)du

=
√
K(β)l2Vmax

(
3
√

3

π
− 1

)
.

(6)

Using the parameters obtained by the DFT
calculations29 with the vdW-DF2 functional:
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l = 1.430 Å, k = 331 ± 1 J/m2 and ν = 0.174 ± 0.002,
we estimate that the dislocation width is 13.4 nm and
8.6 nm for tensile and shear domain walls, respectively.
Because of the significant scatter in the data on the
barrier Vmax to relative sliding of the layers, as discussed
in Section IIA, the accuracy of these estimates is
about 20%. The estimated dislocation widths are thus
consistent with the experimental data2,3,5 of 11 nm for
tensile domain walls and 6 – 7 nm for shear domain walls
obtained for supported bilayer graphene. The deviation
from the experimental data is comparable to that in the
simulations based on the atomistic22 and multiscale33

approaches. The formation energy of domain walls per
unit length computed using eq 6 is 0.106 eV/Å and 0.068
eV/Å for tensile and shear domain walls, respectively.

C. Domain Wall Networks

Let us now derive an expression for the energy of
graphene bilayer with a domain wall network. If only an
isotropic external load is applied, such as biaxial elonga-
tion of one of the layers and/or its relative rotation with
respect to the other layer, it can be expected that all
domain walls in the ground state of bilayer graphene, if
any, should be characterized by the same angle β between
the Burgers vector and normal to the wall. Therefore,
structures with a regular triangular domain wall network
with six identical domain walls merging at each disloca-
tion node should be considered as possible candidates for
the ground state (Figures 2 and 3).

Non-isotropic loads, such as uniaxial tensile or shear
strain in one of the layers, should deform the equilat-
eral triangular network and lead to formation of triangles
with non-equal sides. Since the relative displacement of
the layers accross two sides of a triangle occurs at an
angle of 120◦ (Figures 1 and 2), the angle α12 between
these sides is related to the angles β1 and β2 between
the Burgers vectors and normals of the corresponding
domain walls as

α12 = 60◦ + β1 − β2. (7)

In the present paper, we mostly limit our consideration
to the case of the isotropic load. Nevertheless, we also
briefly discuss the structure of twisted bilayer under the
special case of shear load providing triangular commen-
surate domains with two equal sides.

Let us consider a regular triangular domain wall net-
work with the angle β between the Burgers vectors and
normals of the domain walls (0 ≤ β ≤ 90◦) and side L
of the triangles corresponding to the commensurate do-
mains (Figure 2). To use the Frenkel-Kontorova model,
we assume that L is much larger than the dislocation
width, L� lD, where the dislocation width, lD, is deter-
mined by eq 5.

Since the relative displacement of the layers grows
by l sinβ between centers of adjacent commensurate do-
mains in the direction perpendicular to the line connect-

FIG. 3. Scheme of a dislocation node in twisted bilayer
graphene with a regular triangular domain wall network.
Solid lines correspond to the boundaries between commen-
surate domains with the AB and BA stackings and domain
walls. The center lines of the domain walls with the SP stack-
ing are shown by dashed lines. The boundaries of the dislo-
cation node with the AA stacking in the center are indicated
by dotted lines. The dislocation width lD, relative displace-
ment ~u0(~r) of the layers at the position ~r with respect to the
hexagon center (|~u0(~r)| = |~r|l/lD), its components ~u0,‖ and
~u0,⊥ parallel and perpendicular to ~r, respectively, and angle
β between the Burgers vectors and normals of the domain
walls are shown.

ing them and the distance between them is L/
√

3 (Figure
2), such a triangular network corresponds to the angle of
relative rotation of the layers

φ ≈ tanφ =
l
√

3 sinβ

L
(8)

(for φ . 10◦). At the same time, the relative displace-
ment of the layers in the direction along the line connect-
ing centers of adjacent commensurate domains increases
by l cosβ. Since the layers of the bilayer are made of the
same material, this displacement is equally distributed
between the layers and formation of the triangular net-
work is associated with an extra relative biaxial elonga-
tion

ε0 =

√
3l cosβ

2L
(9)

in each of the layers. If the layers were free, eqs 3 and 6
would describe the energy of domain walls in the bilayer
graphene with the relative biaxial elongation of the bot-
tom layer ε0 and relative rotation angle of the layers φ
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with respect to the commensurate system with the zero
biaxial elongation. As we consider the bottom layer with
the relative biaxial elongation ε, eqs 3 and 6 correspond to
the energy of domain walls with respect to the commen-
surate system with the relative biaxial elongation ε− ε0.
To compare the energies of the systems with the same
elongation of the bottom layer, it is needed to substract
the change of the elastic energy of the commensurate bi-
layer upon the change of the relative biaxial elongation
from ε− ε0 to ε.

The energy of the bilayer with the domain wall network
relative to the commensurate bilayer with the co-aligned
layers and the same relative elongation ε of the bottom
layer can thus be presented as

∆Wtot = −∆Wel + ∆Wdw + ∆Wdn, (10)

where ∆Wel is the change of the elastic energy of the com-
mensurate bilayer due to the extra elongation ε0, ∆Wdw

and ∆Wdn are the contributions of the domain walls and
dislocation nodes, respectively. We consider here the en-
ergies per unit area of the bilayer.

The extra elongation ε0 corresponds to the increase in
the elastic energy of the commensurate bilayer by

∆Wel =
2k

(1− ν)

(
ε2 − (ε− ε0)

2
)

=
2
√

3kε cosβ

(1− ν)

l

L
− 3k cos2 β

2(1− ν)

(
l

L

)2

.

(11)

The contribution of the domain walls is related to the
energy ∆W per unit length of domain walls given by eq
6 as ∆Wdw = 3L∆W/(2S), where S =

√
3L2/4 is the

area of one commensurate domain. Thus,

∆Wdw =
2l

L

√
3K(β)Vmax

(
3
√

3

π
− 1

)

=
2l

L

√
3kVmax

(1− ν2)

(
cos2 β +

1− ν
2

sin2 β

)(
3
√

3

π
− 1

)
(12)

To estimate the contribution of the dislocation nodes,
we suppose that the nodes have the shapes of hexagons
with the side lD equal to the width of domain walls and
given by eq 5 (Figure 3). Since the relative displace-
ment of the layers changes nearly linearly within do-
main walls,1,28,29,34,35,48 we can consider the model in
which the layers within a dislocation node are uniformly
stretched and rotated, i.e. the relative displacement of
the layers within the node is described as

~u0(~r) = l

{
sinβ

~ez × ~r
lD

+ cosβ
~r

lD

}
, (13)

where ~ez is the unit normal to the graphene surface, ~r is
the vector describing positions of the atoms within the
dislocation node relative to the hexagon center and ~u0

is chosen zero at the AA stacking. Correspondingly, the
layers are in the AB and BA stackings at the vertices
of the dislocation node and in the AA stacking at the
center. As shown in our previous paper,34 the assump-
tions we use for dislocation nodes correspond an error of
10–20% in the formation energy. This is comparable to
the error in estimates of the formation energy of domain
walls related to the scatter of the available data on the
barrier to relative sliding of graphene layers, Vmax (see
Section IIA). This model is also consistent with the re-
sults of multiscale simulations,33 where it was shown that
the layers of twisted graphene are simply rotated with re-
spect to each other within the dislocation nodes formed
by shear domain walls (β = 90◦). The angle of rotation
of the layers within the nodes determined in that paper
was also close to l/lD.

It follows from eq 13 that the average elastic energy
within a node is given by

Vel =
k cos2 β

2(1− ν)

(
l

lD

)2

. (14)

The average energy of interlayer interaction within a
node can be found as

Vin =

∫
hex

V (ux, uy)duxduy∫
hex

duxduy
=

3

2
V0 = 3Vmax, (15)

where the energy is integrated over a hexagon of the po-
tential energy surface with the center at the AA stacking
and vertices at the AB and BA stackings (see Figure 1
and eq 1). Note that Vin is the same as the average energy
of interlayer interaction over the entire potential energy
surface, i.e. the layers within a dislocation node in our
model are fully incommensurate. Such a fully incommen-
surate system is observed when the layers are rotated by
an angle at which the domain wall network disappears
and no moiré pattern is formed.36,39,40 And even at the
angles corresponding to moiré patterns, the average in-
terlayer interaction energy is almost the same as Vin (see
Ref.50).

The contribution of a single dislocation node to the
relative energy of the system with a triangular domain
wall network can then be presented as

wdn = (Vel + Vin)Sdn, (16)

where Sdn = 3
√

3lD
2/2 is the area of one dislocation

node. In the cases of tensile and shear domain walls, this
quantity is 151 eV and 35 eV, respectively. For compar-
ison, these values are equal to the formation energy of
tensile and shear domain walls of length 144 nm and 52
nm, respectively.

Taking into account that the density of the nodes is
1/(2S) = 2/(

√
3L2), the contribution of the dislocation

nodes to the energy of the bilayer with a triangular do-
main wall network relative to the commensurate state
can be written as ∆Wdn = 2wdn/(

√
3L2). Using eqs 14
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and 15, this gives

∆Wdn = 3

(
lD
L

)2
(

3Vmax +
k cos2 β

2(1− ν)

(
l

lD

)2
)
. (17)

Based on eq 5, this contribution can be expressed as

∆Wdn = 3k

(
l

L

)2
2(5 + 2ν) cos2 β + 3(1− ν) sin2 β

8(1− ν2)
.

(18)

Using eqs 10–12 and 18, the energy of the bilayer with
a triangular domain wall network relative to the com-
mensurate system can be finally presented in the form

∆Wtot =
A(β)l

L
+
B(β)l2

L2
, (19)

where

A(β) = −2
√

3kε cosβ

1− ν
+ 2

√
3kVmax

(1− ν2)

×

√(
cos2 β +

1− ν
2

sin2 β

)(
3
√

3

π
− 1

) (20)

and

B(β) = 3k
2(7 + 4ν) cos2 β + 3(1− ν) sin2 β

8(1− ν2)
. (21)

In the limit L → ∞, ∆Wtot in eq 19 tends to zero as
this case corresponds to the commensurate system.

III. RESULTS

A. Free Upper Layer

First let us consider the case when the upper layer can
rotate freely with respect to the bottom layer. In this
case, at L = L0, where L0 is the optimal period of the
domain wall network, the following conditions should be
fulfiled: ∂∆Wtot/∂L = 0 and ∂2∆Wtot/∂L

2 ≥ 0, where
∆Wtot is given by eq 19.

If A(β) is positive, the optimal period of the network
tends to infinity, i.e. the commensurate state is energet-
ically preferred over the systems with triangular domain
wall networks characterized by a given β. If A(β) is neg-
ative, the optimal state with a given β corresponds to the
bilayer with the domain wall network having the period

L0(β) = −2B(β)

A(β)
l (22)

and energy

∆W0(β) = −A
2(β)

4B(β)
(23)

with respect to the commensurate system.
The critical relative biaxial elongation at which the

network characterized by the angle β becomes more en-
ergetically favourable than the commensurate state is de-
termined by the condition A(β) = 0, which gives

εc(β) =

√
Vmax(1− ν)

k(1 + ν)

(
1 +

1− ν
2

tan2 β

)

×

(
3
√

3

π
− 1

)
= (1− ν)

∆W (β)

kl cosβ
.

(24)

As seen from this equation, the minimal critical elon-
gation εc0 is reached for β = 0◦: εc0 = εc(0). There-
fore, at relative biaxial elongations ε > εc0 = 3.0 · 10−3,
the ground state of graphene bilayer with a biaxially
stretched bottom layer and free upper layer corresponds
to the structure with a triangular domain wall network
and the commensurate-incommensurate phase transition
takes place at ε = εc0. Note that the expression for εc(β)
does not depend on B, i.e. the exact model used for dis-
location nodes. Because of the uncertainty in the value
of the barrier Vmax to relative sliding of the layers, as
discussed in Section IIA, the accuracy of our estimate of
the critical elongation is about 20%.

As follows from eqs 20 and 23, above the critical elon-
gation εc, the relative energy of the bilayer with the do-
main wall network characterized by the angle β can be
written as

∆W0(β) = −3k2(ε− εc(β))2

(1− ν)2
cos2 β

B(β)
. (25)

Eq 21 shows that cos2 β/B(β) is maximal for β = 0◦.
Taking into account that for this β the critical elongation
εc is also minimal, it is clear that formation of tensile
domain walls aligned along the zigzag directions with β =
0◦ is preferred over other types of domain walls for ε ≥
εc0. The regular triangular domain wall network with
β = 0◦ corresponds to the zero relative rotation angle of
the layers (see eq 8 and Figure 2b). Thus, if the upper
layer of the bilayer is free, it stays co-aligned with the
bottom layer upon the commensurate-incommensurate
phase transition.

It is seen from eqs 20 – 22 for ε ≥ εc0 that the period
L0(0) of the most energetically favourable domain wall
network with β = 0◦ is inversely proportional to the dif-
ference between the elongation of the bottom layer and
critical elongation:

L0(0) =

√
3(7 + 4ν)

4(1 + ν)(ε− εc0)
l ∝ l(ε− εc0)−1. (26)

The relative energy of the bilayer with such a domain
wall network changes as

∆W0(0) = −4(1 + ν)k(ε− εc0)2

(1− ν)(7 + 4ν)
∝ −kl2/L2

0(0), (27)
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as follows from eq 23. Therefore, we can conclude that
the commensurate-incommensurate phase transition in
bilayer graphene taking place upon increasing the biaxa-
ial elongation of the bottom layer is of the second order
and can be described using the inverse period L−10 (0) of
the domain wall network as an order parameter.

It should be pointed out that our model for bilayers
with a triangular domain wall network is justified only
for L0 � lD. From eqs 5 and 26, it is clear that this
condition is fulfiled for tensile domain walls with β = 0◦

at elongations of the bottom layer

ε� εmax = εc0 +

√
3

2
(7 + 4ν)

√
Vmax(1− ν)

k(1 + ν)
, (28)

i.e. ε� 3.3 · 10−2.

B. Twisted Bilayer

If the layers are rotated with respect to each other
by the angle φ (Figure 2a), eq 8 describes the relation
between the angle β between the Burgers vectors and
normals of the domain walls and the period L of the
triangular network. Then the first term in the relative
energy of the system with a triangular domain wall net-
work given by eq 19 and determined by A(β) from eq 20
can be written using the notation χ = cotβ as

A(β)
l

L
=

(
A0

√
χ2 +

1− ν
2
−A1χ

)
, (29)

where

A0 = 2φ

√
kVmax

(1− ν2)

(
3
√

3

π
− 1

)
(30)

and

A1 = 2φ
kε

(1− ν)
. (31)

The second term in eq 19 determined by B(β) from eq
21 is given by

B(β)

(
l

L

)2

=
(
B0χ

2 +B1

)
, (32)

where

B0 = kφ2
7 + 4ν

4(1− ν2)
(33)

and

B1 = kφ2
3

8(1 + ν)
. (34)

Note that A0, A1, B0 and B1 ≥ 0.

Finally eq 19 takes the form

∆Wtot = A0

√
χ2 +

1− ν
2
−A1χ+B0χ

2 +B1. (35)

If there is no elongation applied to the bottom layer
(ε = 0), then A1 = 0. It is clear that in this case, the
minimal energy of the triangular network is reached for
χ = 0, i.e. shear domain walls aligned along the arm-
chair directions with β = 90◦ (Figure 2c). The relation
between the period L0 = L of the triangular network and
the angle φ of rotation of the layers in this case follows
from the simple geometrical considerations (see eq 8) and
is given by

L0 =
l
√

3

φ
. (36)

For example, L0 = 142 nm at φ = 0.1◦ and this value
agrees well with the experimentally observed11 period
Lexp = 120 nm – 140 nm at the same angle of rota-
tion (note that the experimentally observed pattern is
not really regular and the triangular commensurate do-
mains are not exactly equilateral, probably due to the
presence of inhomogeneous strains). For φ = 0.4◦, we
get L0 = 35.5 nm, while the experimental images11 give
Lexp = 34 nm – 39 nm.

As follows from eqs 30, 34 and 35, the energy of the
twisted bilayer with the triangular domain wall network
in the absence of the external strain applied grows upon
increasing the angle φ of relative rotation of the layers
with respect to the energy of the commensurate state of
co-aligned layers as

∆W0 = φ

√
2kVmax

(1 + ν)

(
3
√

3

π
− 1

)
+

3kφ2

8(1 + ν)
. (37)

This function is plotted in Figure 4. The linear term in
this expression is dominant for φ� 0.8◦.

It can be estimated from eq 37 that the relative en-
ergy ∆W0 of the twisted bilayer becomes comparable to
the relative energy of the incommensurate moiré struc-
ture of about Vin (see eq 15) at φ = φc ∼ 0.6◦. A
gradual crossover to the moiré structure was observed
experimentally when the angle of relative rotation of
the layers increased across the characteristic crossover
angle φc approximately equal to 1◦ (Ref.11). A simi-
lar crossover angle was also obtained in atomistic22 and
multiscale33 simulations. It is clear that in graphene lay-
ers rotated by about 1.1◦, where superconductivity was
discovered,51 the superstructure does not correspond to
well-defined commensurate domains separated by soliton
domain walls.

To define better the region of φ where our model is
valid, we should consider the condition L0 � lD with the
dislocation width lD determined by eq 5. In the case of
β = 90◦, this means φ � φmax = 2

√
6Vmax(1 + ν)/k =

0.029 = 1.6◦. In atomistic simulations,22 the dislocation
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FIG. 4. Estimated energy ∆W0 (in meV/Å2) of the twisted
bilayer with the regular triangular domain wall network as
a function of the angle φ (in degrees) of relative rotation of
the layers with respect to the commensurate bilayer with co-
aligned layers. The energy of the fully incommensurate state
is shown by the horizontal dotted line. The estimated angle
φc at which the crossover to the moiré structure takes place
is indicated by the vertical line.

width was independent of the period of the bilayer super-
structure for L0 & 5lD. This corresponds to φ . 0.33◦.

Let us now consider the changes in the local structure
of domain walls and period of the domain wall network
upon application of non-zero elongation to the bottom
layer (ε > 0). In this case, the parameter χ of the opti-
mal triangular domain wall network is determined by the
condition ∂∆Wtot/∂χ = 0. As follows from eq 35, this
condition is reduced to

∂∆Wtot

∂χ
=

A0χ√
χ2 + 1−ν

2

−A1 + 2B0χ = 0. (38)

Note that there is a unique solution for any A1 > 0 and
it corresponds to the minimum (∂2∆Wtot/∂χ

2 > 0).

For χ �
√

(1− ν)/2 = 0.64 (tanβ � tan 57◦), the
solution is

χ−1 ≈ χ−10 =
2

A1

(
B0 +

A0√
2 (1− ν)

)

=
1

ε

(
εc0

√
2

1− ν
+ φ

7 + 4ν

4(1 + ν)

)
.

(39)

In the opposite limit χ�
√

(1− ν)/2, eq 38 gives

χ−1 ≈ 2B0

A1 −A0
=

φ(7 + 4ν)

4(1 + ν)(ε− εc0)
. (40)

In the intermediate region, the solution χ = χn→∞
can be found iteratively starting from eq 39 through the

FIG. 5. Estimated (a) angle β (in degrees) between the Burg-
ers vectors and normals of the domain walls and (b) inverse
period L−1

0 (in µm−1) of the most energetically favourable
triangular domain wall network in bilayer graphene as func-
tions of the relative biaxial elongation ε of the bottom layer
and angle φ (in degrees) of relative rotation of the layers.

expression

χ−1n =
2

A1

B0 +
A0

2
√
χ2
n−1 + 1−ν

2

 . (41)

The angle β = arctanχ−1 between the Burgers vec-
tors and normals of the domain walls and inverse period
L−10 = φ/(l

√
3 sinβ) of the most energetically favourable

triangular network (see eq 8) computed using eq 41 are
shown in Figure 5. It should be emphasized once again
here that our model is valid only for networks with
the large period L0 � lD, where the dislocation width
lD ∼ 10 nm is determined by eq 5, and we limit our
consideration to such cases. It is seen from Figure 5 that
both the angle β and period L0 depend monotonically on
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the angle φ of relative rotation of the layers and relative
biaxial elongation ε of the bottom layer. Upon stretching
the bottom layer, the angle β decreases from 90◦ to 0◦,
i.e. the domain walls rotate with respect to the commen-
surate domains so that their orientation changes from
armchair to orthogonal zigzag and the character of the
walls changes from shear to tensile. Increasing the angle
φ of relative rotation of the layers has an opposite effect.
The period L0 of the network decreases, i.e. the com-
mensurate domains shrink in size, upon increasing both
φ and ε.

Let us now discuss the limits of nearly shear and nearly
tensile domain walls described by eqs 39 and 40, respec-
tively. As seen from eq 39, the condition χ�

√
(1− ν)/2

for the limit of nearly shear domain walls can be refor-
mulated in terms of elongations as

ε� εl = εc0 + φ
(7 + 4ν)

√
1− ν

4
√

2(1 + ν)
. (42)

Therefore, this limit also corresponds to the limit of small
elongations.

It also follows from eq 39 that in the limit of nearly
shear domain walls, tanβ depends linearly on the angle
φ of relative rotation of the layers and is inversely pro-
portional to the relative biaxial elongation ε (Figure 5a).
The latter means that upon stretching the bottom layer
at a given angle φ, the domain walls should rotate away
from the armchair direction at a virtually constant rate:

dβ

dε
≈ −

(
εc0

√
2

1− ν
+ φ

7 + 4ν

4(1 + ν)

)−1
. (43)

The optimal period L0 of the domain wall network in
the limit of nearly shear domain walls weakly depends
on the elongation ε and changes inversely proportional
to the angle φ according to eq 36 (Figure 5b).

The opposite limit of nearly tensile domain walls is
described by eq 40. As follows from the equation, this
limit corresponds to the case ε > εc0 and

φ� φl =
4
√

2(1 + ν)

(7 + 4ν)
√

1− ν
(ε− εc0). (44)

Therefore, this is the limit of small angles φ of relative
rotation of the layers at relative biaxial elongations ε ex-
ceeding the critical one. The function φl(ε) is inverse to
εl(φ) (see eq 42).

In the limit of nearly tensile domain walls, the angle β
between the Burgers vectors and normals of the domain
walls is small and approximately equal to χ−1. As seen
from eq 40, this means that β is proportional to the angle
φ and inversely proportional to the difference between
the elongation ε and its critical value εc0 (Figure 5a).
The rotation of the domain walls away from the zigzag
direction thus occurs at a constant rate upon changing
the angle φ at a given elongation ε:

dβ

dφ
≈ 7 + 4ν

4(1 + ν)(ε− εc0)
. (45)

The optimal period L0 of the domain wall network that
follows from eq 8 in this case is given by

L0 ≈
2
√

3B0l

(A1 −A0)φ
=

√
3(7 + 4ν)l

4(1 + ν)(ε− εc0)
. (46)

Therefore, the period of the network in the limit of of
nearly tensile domain walls does not depend on the angle
φ of relative rotation of the layers and is determined only
by the relative biaxial elongation ε of the bottom layer
(Figure 5b). Note that this equation is exactly the same
as eq 26 derived before for co-aligned graphene layers.

IV. DISCUSSION

Let us now discuss the superstructure of graphene bi-
layer under other types of mechanical load.

A. Compression

The same equations as for the bilayer with one
stretched layer describe the system in which the layer
is compressed. However, in the latter case, the strain
can be effectively reduced nearly to zero through out-of-
plane buckling. The crucial parameter for this process is
the adhesion of the bilayer to the incommensurate sub-
strate. When the elastic energy of the commensurate bi-
layer, 2kε2/(1 − ν), becomes comparable to the binding
energy Vsub, the bilayer can buckle away from the sub-
strate losing in the adhesion to the substrate but gaining
in the elastic energy. Thus, the compressive strain at
which buckling out becomes energetically favourable for
the commensurate bilayer can be estimated as εsub ∼√

(1− ν)Vsub/(2k). At such strains, there is no need in
formation of domain walls. At ε� εsub, however, all the
results obtained for the case of stretching should equally
hold in the case of compression.

For example, the magnitude of the binding energy
for graphene on hexagonal boron nitride52 or another
graphene layer with the orientation corresponding to
the fully incommensurate state53 is about Vsub = 35
meV/atom. This means that buckling out is supressed
for such substrates till the compressive strain εsub ∼
1.6 · 10−2. This is 5 times greater than the critical strain
εc0 (see eq 24) and, therefore, it should be possible to
observe the commensurate-incommensurate phase tran-
sition in co-aligned graphene layers or transformation of
the domain wall network in twisted graphene bilayer not
only upon stretching but also upon compression.

B. Bending

Bending of graphene bilayer can also give rise to forma-
tion of domain walls. In bended commensurate bilayer,
one layer is slightly stretched and the other one slightly
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compressed. Therefore, it is necessary to include into the
model that in the layers, there are tensile strains of op-
posite sign: ±εR = ±h0/(2R), where h0 = 0.34 nm is
the interlayer spacing and R � h0 is the curvature ra-
dius. Such strains couple to the relative displacement of
the layers and reduce the formation energies of domain
walls (eq 6) and dislocation nodes (eq 16). It can be ex-
pected that, similar to elongation applied to the bottom
layer, bending of co-aligned layers can lead to formation
of networks of tensile domain walls. Bending of twisted
bilayers should favour transformation of shear walls to
tensile ones and reduce the period of the domain wall net-
work. A modification of the Frenkel-Kontorova model is
required to describe the effect of bending quantitatively
and this will be performed elsewhere.

C. Shear Strain

As discussed in Section IIIB, the period of the trian-
gular domain wall network in twisted graphene bilayer
in the absence of elongation applied (Figure 2c) is de-
termined by the angle of relative rotation of the layers
through purely geometrical considerations (see eqs 8 and
36). The same also holds when additionally the ends of
the bottom layer are displaced in opposite armchair di-
rections so that shear strain τ is applied to the bottom
layer, as shown in Figure 6. It can be expected that upon
such an external load, the shear domain walls in the arm-
chair direction parallel to the displacements of the ends
of the bottom layer are preserved, while the other domain
walls change their orientation in a symmetric way so that
the triangular commensurate domains are left with two
equal sides in the perpendicular zigzag direction.

Let us denote the length of the non-equal side along the
armchair direction as L and the equal angles of the trian-
gles as α. Since the non-equal side is formed by the shear
domain wall, the angles between the Burgers vectors of
the domain walls forming the two equal sides and their
normals are β = α+ 30◦ (see eq 7). We consider relative
displacements of the layers in the equivalent commensu-
rate domains with the same orientation. The distance be-
tween the nearest equivalent domains along the armchair
direction is L and the relative displacement of the layers
changes between them by b

√
3 = l

√
3 in the perpendic-

ular zigzag direction. The shear strain applied does not
contribute to this displacement and the rotation angle
of the layers is thus given by φ ≈ tanφ = l

√
3/L (for

φ . 10◦), the same as in the absence of the shear strain
(see eq 36). The distance between the nearest domains in
the perpendicular zigzag direction is L tanα and both the
shear strain and relative rotation of the layers contribute
to the change of the relative displacement of the layers by
3b = 3l so that τ + φ ≈ τ + tanφ = 3l/(L tanα). There-

fore, L = l
√

3/φ and α = arctan
√

3φ/(φ+ τ), i.e. the
parameters of the isosceles triangular network are clear
without energy optimization.

FIG. 6. Scheme of the isosceles triangular domain wall net-
work in twisted bilayer graphene with the ends of the bottom
layer displaced in opposite armchair directions (as shown by
the grey arrows). The length L of the non-equal side of the
triangles, changes in the relative displacement of the layers for
the nearest equivalent commensurate domains in the orthog-
onal armchair and zigzag directions, angle φ of the relative
rotation of the layers and shear strain τ applied to the bot-
tom layer are indicated.

CONCLUSIONS

Using the two-chain Frenkel-Kontorova model, we have
studied the parameters of the triangular domain wall net-
work for graphene bilayer with a simultaneously twisted
and biaxially stretched bottom layer. We have focused
on the case of the isotropic external load corresponding
to equal elongations of the bottom layer along two or-
thogonal in-plane axes and relative rotation of the layers,
when commensurate domains formed have the shape of
equilateral triangles.

We have demonstrated that if the layers are free to
rotate, the layers stay co-aligned and formation of ten-
sile domain walls is preferred upon stretching the bottom
layer. In this case, the commensurate-incommensurate
phase transition from the commensurate state to the in-
commensurate one with the regular triangular network of
tensile domain walls aligned along the zigzag directions
takes place at the critical relative biaxial elongation of
the bottom layer of 3.0 · 10−3.

If the angle between the layers is fixed, shear domain
walls aligned along the armchair directions are observed
at zero elongation of the bottom layer. However, once
the elongation is applied, the orientation of the domain
walls changes from armchair to zigzag, i.e. the character
of the walls changes from shear to tensile, and the period
of the network decreases. The quantitative dependences
of the optimal angle between the Burgers vectors and
normals of the domain walls and period of the domain
wall network have been obtained. It has been estimated
that the formation energies of dislocation nodes are 151
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eV and 35 eV in the cases of tensile and shear domain
walls, respectively.

When the ends of the bottom layer in twisted bilayer
are shifted in opposite armchair directions, the triangular
commensurate domains shrink or extend in the perpen-
dicular zigzag direction and are left with only two equal
sides. We have shown that the parameters of such a
isosceles triangular domain wall network are determined
by the relative rotation angle of the layers and shear
strain applied through the purely geometrical considera-
tions.

Experimental studies of the period of the triangu-
lar domain wall network by analogy with previous
measurements using scanning tunneling microscopy,5

scanning tunneling spectroscopy,10 transmission electron
microscopy2,3,11 or near-field infrared nanoscopy8 can
help to validate the ab initio results on the energy of
the fully incommensurate state of graphene layers with
respect to the commensurate state. At the same time,
such measurements can provide a basis for detection of
relative strains and rotation in graphene layers.

External strains can be also applied to tune the param-
eters of the triangular domain wall network and, there-
fore, electronic,7,10–24 magnetic6,24,25 and optical26 prop-
erties of twisted bilayer graphene. As we demonstrated,
biaxial stretching of the bottom layer of twisted bilayer
results in two structural effects: (1) a change of the char-
acter of the domain walls from shear to tensile and (2) a
decrease of the period of the domain wall network. The
calculations17,20 show that at zero interlayer bias, ten-
sile domain walls are almost insulating, while shear ones
have only a soft transport gap. Therefore, stretching of

the bottom layer of twisted bilayer should drive the sys-
tem to a more pronounced insulating state with a larger
transport gap. Under the interlayer bias applied, AB and
BA regions of bilayer graphene correspond to two topo-
logical phases with opposite valley Chern numbers. As
a result, domain walls separating AB and BA domains,
which are insulating, confine one-dimensional conduct-
ing channels associated with topologically protected heli-
cal states.7,10,11,13,16,24 Because of the helicity, electrons
can flow in these channels with no dissipation by mo-
mentum scattering. The topologically protected helical
states arise in domain walls independent of their charac-
ter, shear or tensile. Therefore, the effect of stretching
on the electronic transport in twisted bilayer under the
interlayer bias should be mostly related to the decrease in
the period of the domain wall network. Upon stretching,
the number of channels increases. However, their length
decreases and there are more dislocation nodes, where
mixing of currents from different channels occurs. The
effect of these changes requires further investigation.
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