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The analytical two-chain Frenkel-Kontorova model is used to describe domain wall networks in bilayer
graphene upon biaxial stretching of one of the layers. We show that the commensurate-incommensurate
phase transition leading to formation of a regular triangular domain wall network at the relative biaxial
elongation of 3.0 × 10−3 is followed by the transition to another incommensurate phase with a striped
network at the elongation of 3.7 × 10−3. The reentrant transition to the phase with a triangular domain wall
network is predicted for the elongation ∼10−2.
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The presence of two layers in bilayer graphene gives rise
to such interesting physical phenomena such as topological
confinement [1] and superconductivity [2]. Here we predict
the reentrant phase transition in bilayer graphene under
biaxial stretching of one of the layers. The phenomenon of
reentrant phase transition means that upon a monotonic
change of any thermodynamic parameter (for example,
temperature) two (or more) phase transitions occur and the
system finally gets into a state which is macroscopically
similar to the initial one [3]. Reentrant phase transitions
have been observed for a wide set of 3D systems such as
liquid mixtures [3], liquid crystals [4], microemulsions [5],
granular superconductors [6], etc. The possibility of inverse
melting of a polymeric system has been also proposed [7].
As for 2D systems, a reentrant transition has been observed
only for the magnetic domain structure of a thin film [8].
Some years ago the commensurate-incommensurate

phase transition in bilayer graphene under uniaxial elon-
gation of one of the layers was predicted [9] based on the
analytical two-chain Frenkel-Kontorova model [10,11].
Bilayer graphene has two types of degenerate but topo-
logically inequivalent minima at the AB and BA stackings
with half of the atoms of one layer on top of the atoms of
the second layer and the other half on top of the centers of
the hexagons. The commensurate-incommensurate phase
transition under strain corresponds to formation of a
stacking dislocation separating commensurate domains
with the AB and BA stackings, that is stacking dislocations
play the role of domain walls with incommensurate
stacking within the walls.
Since the prediction of the commensurate-incommensu-

rate phase transition [9], domain wall networks have been
observed in bilayer and few-layer graphene by various
methods [12–17]. It has been shown that domain walls
influence electronic [16–31], magnetic [14,30,32], and
optical [33] properties of bilayer graphene. Thus, studies

of domain wall networks are of interest not only for
fundamental physics but also for graphene applications.
Recently the two-chain Frenkel-Kontorova model has

been extended to take into account dislocation nodes (i.e.,
crossings of domain walls) and applied to study the
commensurate-incommensurate phase transition in bilayer
graphene under biaxial elongation of one of the layers
[34,35]. A regular triangular domain wall network (Fig. 1)
was predicted to form as a result of such a transition.
However, not only triangular [12,14–17] but also striped
networks of parallel domain walls (Fig. 2) were observed in
the experiments [12–14] where biaxial strain in the bottom
layer could be induced by the interaction with the substrate.
In some cases both of the network structures were found
within the same sample [12,14]. Symmetry lowering
through formation of a striped network can be energetically
favorable under certain conditions because such a network
does not involve energetically expensive dislocation nodes.
This is the case, for example, for rare gas monolayers

FIG. 1. Scheme of a regular triangular network of tensile
domain walls in bilayer graphene. The size L of commensurate
domains and Burgers vectors b⃗1, b⃗2, and b⃗3 of the domain walls
(jb⃗1j ¼ jb⃗2j ¼ jb⃗3j ¼ b) are indicated.

PHYSICAL REVIEW LETTERS 124, 116101 (2020)

0031-9007=20=124(11)=116101(6) 116101-1 © 2020 American Physical Society

https://orcid.org/0000-0002-2880-0275
https://orcid.org/0000-0001-5024-5311
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.124.116101&domain=pdf&date_stamp=2020-03-19
https://doi.org/10.1103/PhysRevLett.124.116101
https://doi.org/10.1103/PhysRevLett.124.116101
https://doi.org/10.1103/PhysRevLett.124.116101
https://doi.org/10.1103/PhysRevLett.124.116101


adsorbed on graphite [36]. Here we apply the two-chain
Frenkel-Kontorova model to study energetics of striped
domain wall networks in bilayer graphene and to demon-
strate that there should be a phase transition between the
incommensurate phases with regular triangular and striped
domain wall networks (triangular and striped incommen-
surate phases) under biaxial stretching of one of the
graphene layers.
At large elongations, the interlayer interaction is not able

to compete with the elastic energy and only weakly
perturbs bilayer structure. In this case, moiré patterns
[28,32,37], in which the size of commensurate domains
is comparable to the width of domain walls, are observed.
Such superstructures, nevertheless, have the same sym-
metry as the structures with regular triangular domain wall
networks and belong to the same triangular incommensu-
rate phase. Therefore, the reentrant phase transition to the
triangular phase is inevitable at large strains applied.
The analytical description of the commensurate-

incommensurate phase transition in bilayer graphene
[9,34,35,38] is based on the approximation of the potential
energy surface for interlayer interaction by the first Fourier
harmonics [39–43]:

Vðux; uyÞ ¼ 2Vmax½3=2þ cosð2k0ux − 2π=3Þ
− 2 cosðk0ux − π=3Þ cosðk0uy

ffiffiffi
3

p
Þ�: ð1Þ

Here Vmax is the barrier to relative in-plane motion of the
layers, ux (uy) is the relative displacement in the armchair
(zigzag) direction, k0 is determined by the bond length l of
graphene as k0 ¼ 2π=ð3lÞ, and the energy is given with
respect to the AB (BA) stacking. The stacking dislocations
in bilayer graphene are partial. The Burgers vectors are
equal in magnitude to the bond length of graphene,
b ¼ l, and aligned along armchair directions. The layers
are displaced along the straight minimum energy paths
between adjacent AB and BA minima (for example,
ux ¼ 0 − l, uy ¼ 0) [9,34,35,38,44]. Depending on the
angle β between the Burgers vector and normal to the
domain wall, the character of the wall can change from

tensile (for the walls aligned in the zigzag direction with
β ¼ 0) to shear (for the walls aligned in the armchair
direction with β ¼ π=2).
The formation energy of domain walls per unit length is

given by [34,35,38,44]

WDðβÞ ¼ W0fðβÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kl2Vmax

ð1 − ν2Þ

s �
3

ffiffiffi
3

p

π
− 1

�
fðβÞ; ð2Þ

where k is the elastic constant under uniaxial stress
expressed as k ¼ Yh through Young’s modulus Y and
thickness of graphene layers h, ν is Poisson’s ratio,
and fðβÞ ¼ ðcos2 β þ sin2 βð1 − νÞ=2Þ1=2 describes the
dependence of the elastic constant on the angle β between
the Burgers vector and normal to domain walls. The
characteristic domain wall width (dislocation width) equals
[34,35,38,44]

lDðβÞ ¼ l0fðβÞ ¼
l
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

Vmaxð1 − ν2Þ

s
fðβÞ: ð3Þ

The accuracy of estimates within the two-chain Frenkel-
Kontorova model is mostly limited by the uncertainty in the
value of the barrier Vmax to relative sliding of the layers. As
discussed in our previous papers [34,35], the scatter in the
available first-principles data on Vmax corresponds to the
error of about 40% in Vmax and 20% in the energy and
width of domain walls. Another source of errors is neglect
of out-of-plane buckling [13,45]. However, such a buckling
is strongly suppressed in supported bilayers [12,13,46].
Using the parameters l ¼ 1.430 Å, k ¼ 331 J=m2, ν ¼
0.174, and Vmax ¼ 1.61 meV per atom of one of the layers
[38], we get the widths of 13.4 nm and 8.6 nm for tensile
and shear domain walls, respectively. These values are
within the 20% error bar from the experimental values for
supported bilayers [12,13,46] of 11 nm and 6–7 nm for
tensile and shear walls, respectively, and close to the results
of atomistic [28] and multiscale [47] simulations. The use
of the Frenkel-Kontorova model is justified as long as the
size of commensurate domains is much greater than the
domain wall width.
The energy of the bilayer with a domain wall network

with respect to the commensurate system with the same
relative biaxial elongation ϵ of the bottom layer per unit
bilayer area, i.e., the formation energy of the domain wall
network, can be written as a sum of three terms [34,35]:

ΔWtot ¼ ΔWel þ ΔWdw þ ΔWdn; ð4Þ
where ΔWdw and ΔWdn are the contributions of domain
walls and dislocation nodes, respectively, and ΔWel is the
term related to the global change of the elongation of the
bottom layer upon formation of domain walls.
Let us first give a brief overview of the results [34,35] for

the regular triangular network of domain walls with the side

FIG. 2. Scheme of a striped domain wall network in bilayer
graphene. The size L=2 of commensurate domains, Burgers
vectors b⃗1 and b⃗2 of adjacent domain walls (jb⃗1j ¼ jb⃗2j ¼ b), and
angles β1 and β2 between the Burgers vectors and normal to the
walls are indicated.
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L of commensurate domains. As shown in our previous
paper [35], if the upper layer is free, it stays coaligned with
the bottom layer upon biaxial stretching of the latter and the
triangular network of tensile domain walls aligned in
zigzag directions is formed. Therefore, here we limit our
consideration to tensile domain walls (Fig. 1). The area of
each commensurate domain is S ¼ ffiffiffi

3
p

L2=4 and the total
length of domain walls per domain is 3L=2. The contri-
bution of domain walls to the formation energy of the
regular triangular domain wall network in Eq. (4) can thus
be calculated as ΔWdw ¼ 3LW0=ð2SÞ ¼ 2

ffiffiffi
3

p
W0=L.

In the case of tensile domain walls, it can be assumed
that dislocation nodes have the shape of hexagons with the
side l0 and that the graphene layers are uniformly stretched
and fully incommensurate inside them [34,35]. As shown
in our previous paper [34], these assumptions correspond to
the error of 10%–20% in the formation energy, which is
comparable to the error coming from the scatter in the
available data on Vmax [34,35] and, therefore, acceptable
for our model. The energy per unit area of a dislocation
node equals Vel þ V in, where V in ¼ 3Vmax is the average
interlayer interaction energy over the potential energy
surface [Eq. (1)] and Vel is the elastic energy coming from
the tensile strain of �l=ð2l0Þ. There is a half of the
dislocation node per commensurate domain, i.e., the nodes
occupy the fraction 3ðl0=LÞ2 of the bilayer area. From these
considerations, the contribution of dislocation nodes can be
written as [34,35]

ΔWdn ¼ 3k

�
l
L

�
2 5þ 2ν

4ð1 − ν2Þ : ð5Þ

To estimate the term coming from the global change of
the elongation of the bottom layer upon formation of the
domain wall network in Eq. (4), we consider the relative
displacement of the layers in adjacent commensurate
domains, which increases by the magnitude of the
Burgers vector, b ¼ l, along the line connecting the centers
of the domains. Since the distance between these centers is
L=

ffiffiffi
3

p
, it can be deduced that formation of the regular

triangular network is associated with the relative biaxial
elongation of ϵ0 ¼

ffiffiffi
3

p
l=ð2LÞ in each of the layers. That is

to accommodate the triangular domain wall network, the
elongation of the bottom layer increases by ϵ0 in com-
parison with the initial commensurate system. To com-
pare the energies of the bilayer with and without the
triangular domain wall network at the same biaxial elon-
gation of the bottom layer, we take into account the
following term:

ΔWel ¼ −
2k

ð1 − νÞ ½ϵ
2 − ðϵ − ϵ0Þ2�

¼ −
2

ffiffiffi
3

p
kϵ

ð1 − νÞ
l
L
þ 3k
2ð1 − νÞ

�
l
L

�
2

: ð6Þ

Finally, on the basis of Eq. (4), we arrive at the
expression for the formation energy of the regular triangu-
lar domain wall network of the form:

ΔWtot ¼
Al
L

þ Bl2

L2
; ð7Þ

where

A ¼ −
2

ffiffiffi
3

p
kϵ

1 − ν
þ 2

ffiffiffi
3

p
W0

l
ð8Þ

and

B ¼ 3kð7þ 4νÞ
4ð1 − ν2Þ : ð9Þ

This expression shows that as long as the elongation is
small and A is positive, the optimal period L0 of the
network determined by conditions ∂ΔWtot=∂L ¼ 0 and
∂2ΔWtot=∂L2 ≥ 0 tends to infinity, i.e., the commensurate
state is more energetically favorable than the systems
with triangular domain wall networks. Once A becomes
negative, the optimal period of the domain wall network
changes as L0 ¼ −2Bl=A and the formation energy as
ΔW0 ¼ −A2=ð4BÞ.
The transition between the commensurate phase and

incommensurate phase with the regular triangular domain
wall network happens when A ¼ 0, i.e., the relative biaxial
elongation reaches the critical value ϵc0 ¼ ð1 − νÞW0=
ðklÞ ¼ 2.97 × 10−3. The expression for the formation
energy of the most favorable regular triangular network
above the critical elongation ϵc can be written as

ΔW0 ¼ −
4ð1þ νÞ

ð1 − νÞð7þ 4νÞ kðϵ − ϵc0Þ2 ð10Þ

and the network period (Fig. 3) as

L0 ¼
ffiffiffi
3

p ð7þ 4νÞ
4ð1þ νÞ

l
ϵ − ϵc0

: ð11Þ

As discussed previously [34,35], such dependences corre-
spond to the second-order phase transition.
Let us now consider the striped incommensurate phase

with parallel domain walls (Fig. 2). In such a phase, there
are no dislocation nodes and ΔWdn ¼ 0. Since AB and BA
domains have to alternate, in bilayer graphene the network
should consist of domain walls with alternating directions
of the Burgers vector with the angle π=3 between them
[38]. We assume that the angles between the Burgers
vectors and normal to the domain walls for the adjacent
walls are β̃ � π=6. As there are two domain walls per
network period L, the contribution of domain walls for the
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striped network is given by ΔWdwðβ̃Þ ¼ Fðβ̃ÞW0=L,
where Fðβ̃Þ ¼ fðβ̃ − π=6Þ þ fðβ̃ þ π=6Þ.
The extra elongation is induced by the striped domain

wall network in the direction perpendicular to the domain
walls and equals ϵ0 ¼ ½cosðβ̃ − π=6Þ þ cosðβ̃ þ π=6Þ�l=
ð2LÞ ¼ ffiffiffi

3
p

l cos β̃=ð2LÞ. Additionally there is also an extra
shear strain τ0 ¼ ½sinðβ̃ − π=6Þ þ sinðβ̃ þ π=6Þ�l=ð2LÞ ¼ffiffiffi
3

p
l sin β̃=ð2LÞ coming from the relative displacement of

the layers along the domain walls. Therefore, the elastic
energy term related to the extra elongation and shear strain
can be written as

ΔWelðβ̃Þ ¼ −
2kϵϵ0
ð1 − νÞ þ

kϵ20
ð1 − ν2Þ þ

k
2ð1þ νÞ τ

2
0

¼ −
ffiffiffi
3

p
kϵ cos β̃
1 − ν

l
L
þ 3kcos2β̃
4ð1 − ν2Þ

�
l
L

�
2

þ 3ksin2β̃
8ð1þ νÞ

�
l
L

�
2

: ð12Þ

The formation energy of the striped domain wall network
can then be presented in the form described by Eq. (7) with

Asðβ̃Þ ¼ −
ffiffiffi
3

p
kϵ cos β̃
1 − ν

þW0Fðβ̃Þ
l

ð13Þ

and

Bsðβ̃Þ ¼ 3k
2 cos2 β̃ þ ð1 − νÞ sin2 β̃

8ð1 − ν2Þ : ð14Þ

The same as for triangular domain wall networks,
systems with striped networks become more energetically
favorable than the commensurate state when Asðβ̃Þ ¼ 0.
This corresponds to the critical relative biaxial elonga-
tion ϵscðβ̃Þ ¼ ð1 − νÞW0Fðβ̃Þ=ð

ffiffiffi
3

p
kl cos β̃Þ.

It is easy to check that Fðβ̃Þ= cos β̃ reaches its minimum
for β̃ ¼ 0. Therefore, the minimal critical relative biaxial
elongation corresponds to ϵsc0 ¼ ϵscð0Þ ¼ ϵc0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið7 − νÞ=6p ¼
3.17 × 10−3. Since this critical elongation is greater than
the value ϵc0 for regular triangular domain wall networks,
the latter one indeed corresponds to the commensurate-
incommensurate phase transition.
For each β̃ the relative energy of the bilayer with the

optimal striped domain wall network changes above the
critical elongation ϵscðβ̃Þ as

ΔWs
0ðβ̃Þ ¼ −

3k2½ϵ − ϵscðβ̃Þ�2
4ð1 − νÞ2

cos2β̃

Bsðβ̃Þ : ð15Þ

Since cos2 β̃=Bsðβ̃Þ is maximal for β̃ ¼ 0 [see Eq. (14)] and
ϵsc is minimal for the same β̃, the most energetically
favorable striped network for ϵ ≥ ϵsc0 corresponds to

β̃ ¼ 0, i.e., the domain walls with β ¼ �π=6 aligned in
the same armchair direction. For such a domain wall
network, the formation energy changes at ϵ ≥ ϵsc0 as

ΔWs
0ð0Þ ¼ −

1þ ν

1 − ν
kðϵ − ϵsc0Þ2 ð16Þ

and the network period (Fig. 3) as

Ls
0ð0Þ ¼

ffiffiffi
3

p

2ð1þ νÞ
l

ϵ − ϵsc0
: ð17Þ

From Eqs. (10) and (16), we can estimate that the striped
incommensurate phase becomes more energetically favor-
able than the triangular one at

ϵc1 ¼
ϵsc0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
7þ 4ν

p
− 2ϵc0ffiffiffiffiffiffiffiffiffiffiffiffiffi

7þ 4ν
p

− 2
¼ ϵc0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð7þ4νÞð7−νÞ

6

q
− 2ffiffiffiffiffiffiffiffiffiffiffiffiffi

7þ 4ν
p

− 2
; ð18Þ

which gives ϵc1 ¼ 1.24ϵc0 ¼ 3.68 × 10−3. At this second
critical relative biaxial elongation, the size of triangular
commensurate domains is 0.57 μm, which is 43 times
greater than the width l0 of tensile domain walls. The
period of the striped network is 0.21 μm, which is 17 times
greater than the width of domain walls with β ¼ �π=6.
Under such conditions, the two-chain Frenkel-Kontorova
model should still be adequate and we can expect that the
accuracy of our estimates of the critical elongations is about
20% and mostly comes from the uncertainty in the barrier
Vmax to relative sliding of the layers [34,35].
Since the triangular and striped phases have different

symmetries, the transition between them is of the first order.
Thus, they can coexist in the same sample, as indeed
observed in the experiments [12,14]. In the phase boundary,
domain walls aligned in two different zigzag directions in
the triangular phase gradually become parallel and aligned
in the same armchair direction, while the separation

FIG. 3. Period L0 of the superstructure of bilayer graphene
(in μm) as a function of relative biaxial elongation ϵ (in %) of
the bottom layer (solid lines). Different phases are indicated:
I—commensurate, II—regular triangular incommensurate,
III—striped incommensurate. The dashed (dash-dotted) lines
represent the results for the barrier Vmax smaller (greater) by 40%.
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between the walls in the third zigzag direction increases and
such walls finally disappear. The relative area of bilayer
belonging to domain walls increases in the transition by
48%. The ratio of critical elongations ϵc1=ϵc0 is determined
only by Poisson’s ratio. Therefore, the phase transition
between the regular triangular and striped incommensurate
phases can be expected also for other 2D materials with the
shape of the surface of the interlayer interaction energy
described by Eq. (1).
Let us now discuss the limit of large elongations when

the interlayer interaction does not perturb significantly the
structure of the layers [48]. In this limit, the system in the
regular triangular incommensurate phase should gradually
approach the fully incommensurate state in which the
bottom layer is uniformly stretched and the upper layer
is relaxed. The period of such a superstructure is L0 ¼
l

ffiffiffi
3

p
=ϵ (Fig. 3). The elastic energy gain with respect to

the commensurate bilayer is ΔWel ¼ −kϵ2=ð1 − νÞ. The
interlayer interaction energy in this system corresponds to
the average over the potential energy surface [Eq. (1)],
ΔWint ¼ V in ¼ 3Vmax. Therefore, the relative energy of the
fully incommensurate bilayer is ΔW0 ¼ ΔWel þ ΔWint ¼
−kϵ2=ð1 − νÞ þ 3Vmax.
As a limit for the striped incommensurate phase, we

should consider the state in which the bottom layer is
uniformly stretched and the upper layer is displaced along
the minimum energy paths between adjacent minima of
the potential energy surface [Eq. (1)] in such a way that the
displacement across the stripes scales linearly with the
distance. The interlayer interaction energy in this case is
given by the average over the minimum energy path
ΔWs

int ¼ Vav ¼ Vmax½3 − 9
ffiffiffi
3

p
=ð2πÞ�. If the displacement

between the equivalent AB energy minima occurs at the
distance L across the stripes, the tensile strain in the upper
layer in this direction equals ϵ − ϵu, where ϵu ¼ l

ffiffiffi
3

p
=L,

and the shear strain τu ¼ l=L. Therefore, the elastic energy
compared to the commensurate bilayer is given by

ΔWs
el ¼ −

kϵϵu
1 − ν

þ kϵ2u
2ð1 − ν2Þ þ

kτ2u
4ð1þ νÞ

¼ −
ffiffiffi
3

p
kϵ

1 − ν

l
L
þ ð7 − νÞk
4ð1 − ν2Þ

�
l
L

�
2

: ð19Þ

The minimal elastic energy

ΔWs
el;0 ¼ −

3ð1þ νÞ
ð1 − νÞð7 − νÞ kϵ

2 ð20Þ

is reached for the superstructure period (Fig. 3)

Ls
0 ¼

7 − ν

2
ffiffiffi
3

p ð1þ νÞ
l
ϵ
: ð21Þ

It is clear that the triangular incommensurate phase
becomes energetically favorable over the striped one at
the elongation

ϵc2 ¼
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p ð7 − νÞVmax

2πk

s
¼ 1.11 × 10−2: ð22Þ

Therefore, it should be expected that the reentrant phase
transition takes place in bilayer graphene with one stretched
layer at the relative biaxial elongation ∼10−2 (Fig. 3).
In summary, we predict that upon biaxial stretching of

one of the layers of bilayer graphene, the commensurate-
incommensurate phase transition to the phase with the
regular triangular domain wall network is followed by
the transition to the phase with the striped domain wall
network and then by the reentrant transition to the triangu-
lar phase. Recently the local change of the domain wall
shape using the scanning tunneling [49] and atomic force
microscope [46] tips has been achieved. The phase tran-
sitions proposed here modify the whole structure of the
domain wall network and thus can be used to manipulate
electronic, optical, and magnetic properties of bilayer
graphene, which is promising for application in gra-
phene-based nanoelectronics.
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