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Resonant optical antennas supporting plasmon polaritons (SPPs) – collective excitations of 

electrons coupled to electromagnetic fields in a medium – are relevant to sensing, 

photovoltaics and light emitting devices, among others. Due to the SPP dispersion, a 

conventional antenna of fixed geometry, exhibiting a narrow SPP resonance, cannot 

simultaneously operate in two different spectral bands. In contrast, this study demonstrates 

that in metallic disks, separated by a nanometric spacer, the hybridized anti-bonding SPP 

mode stays in the visible range, while the bonding one can be pushed down to the mid-

infrared range. Such an SPP dimer can sense two materials of nanoscale volumes, whose 

fingerprint central frequencies differ by a factor of 5. Additionally, the mid-infrared SPP 

resonance can be tuned by employing a phase-change material (VO2) as a spacer. The 

dielectric constant of the phase-change material is controlled by heating the material at the 

frequency of the anti-bonding optical mode. Our findings open the door to a new class of 

optoelectronic devices able to operate in significantly different frequency ranges in the 

linear regime, and with the same polarization of the illuminating wave. 

 

Optical antennas are used to couple freely propagating optical fields to fields in matter and 

already present an established concept in nanophotonics.
[1, 2]

 They can be used for nanoscale 

imaging, light emission, optical detection, coherent light control, as well as for life sciences and 

medical applications.
[3, 4]

 Optical antennas are typically made of metals supporting SPPs 

(plasmonic antennas)
[1]

 and can be designed for a very broad frequency range, from visible (VIS) 

to terahertz frequencies. At mid-infrared (mid-IR) frequencies, novel two-dimensional and van 

der Waals materials have been suggested as an alternative for optical antennas, as for instance 

graphene
[5, 6]

 and topological insulators
[7]

 (supporting Dirac plasmon polaritons) or h-BN 

(supporting hyperbolic phonon polaritons).
[8, 9]

 The latter materials, on the one hand, can be more 

interesting compared to metals due to both much higher polariton confinement and active tuning 

of polariton wavelength (and thus antenna resonance). On the other hand, they are very limited to 

relatively narrow spectral intervals, in which they support polaritons. 
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A particularly interesting application, for which optical antennas present a powerful tool, is 

surface-enhanced spectroscopy.
[10]

 Strong electromagnetic near-fields created by the antennas 

can dramatically (by orders of magnitude) enhance the absorption resonances of the placed 

nearby molecules. The molecular fingerprints are recognized either by analyzing Fano-like 

features appearing in the SPP resonances in the spectra of the extinction cross-section of the 

antennas (surface-enhanced absorption spectroscopy
[10]

) or by monitoring Raman signals 

(surface-enhanced Raman scattering
[11]

). Surface-enhanced spectroscopy is used both in the mid-

IR frequency range, in which many organic materials have vibrational resonances,
[10, 12, 13]

 and in 

the visible one, where electronic transitions in molecules are more relevant.
[14, 15]

 Since metallic 

antennas exhibit SPP resonances in a broad frequency range (with the resonance frequency 

depending upon antenna’s geometry), they seem to be more universal for surface-enhanced 

spectroscopy applications, than antennas made of alternative materials. At the same time, due to 

a big difference between SPP wavelengths at VIS and mid-IR frequencies, one and the same 

conventional SPP antenna cannot simultaneously operate in both spectral bands. For enabling 

dual-band performance, one has to design antennas with large geometric aspect ratios (e.g. rod 

antenna).
[16]

 In this case, the antenna responds differently to illuminating waves of different in-

plane polarizations. 

Here we show that by using a simple vertical SPP dimer composed of two metallic disks 

separated by a nanometric spacer, it is possible to achieve well-pronounced SPP resonances 

simultaneously in the VIS and mid-IR ranges. By numerical simulations, we demonstrate that 

each of the resonances can be used for surface-enhanced spectroscopy. The frequencies of the 

emerging SPP resonances are predominantly defined by strong hybridization between the SPPs 

supported by each disk. Therefore, the resonances of the vertical SPP dimer can be tuned by the 

thickness of the spacer and its dielectric permittivity. As an example, we tune the position of the 

mid-IR resonance by filling the spacer of the antenna with VO2 (phase-change material having 

temperature-dependent dielectric permittivity). Importantly, thanks to the rotational symmetry of 

the antenna, antenna’s electromagnetic response is totally independent of the in-plane 

polarization of the incident wave. 

In Figure 1a, we illustrate the concept of a dual-band antenna: two gold disks (of height ℎ =

40 nm and radius 𝑅 = 120 nm) are separated by a dielectric spacer. The antenna is placed on a 

standard SiO2 substrate, transparent in both VIS and mid-IR ranges. For simplicity of 

simulations, we consider a periodic array of such antennas. Taking a subwavelength period, 𝐿 = 

400 nm, in the whole studied range of wavelengths (from 0.55 m to 5.5 m) we avoid 

diffraction into higher orders except the fundamental (zero) one. On the other hand, the chosen 

period is much larger than the characteristic confinement length of the SPPs in the disks, 

𝐿 ≫ 𝛿𝑆𝑃𝑃, where 𝛿𝑆𝑃𝑃 ≲ 𝜆𝑝/2𝜋 (with 𝜆𝑝 being the wavelength of the SPP on an infinite metal 

surface). Hence, the coupling between the SPP modes of different antennas is negligible.  
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Figure 1. Bonding and anti-bonding modes in a vertical SPP dimer antenna placed on SiO2 substrate. a) 

The schematic of the antenna. The antenna is illuminated by a normally incident electromagnetic plane 

wave with the polarization along the 𝑥-axis. b) Spatial distribution of Re(𝐸𝑧) taken on the bottom surface 

of the upper disk (upper images) and top surface of the lower disk (lower images), respectively. The 

arrows represent the in-plane electric field c) The extinction spectra of the periodic array of antennas with 

different spacers between the disks. d) The extinction of the periodic array of antennas as a function of the 

wavelength (frequency) and the spacer thickness. The black dashed curve represents the position of the 

bonding resonance according to the coupled oscillators model. e) Spatial distribution of the absolute value 

of the electric field. The frequencies of the bonding and anti-bonding modes in (b) and (e) are 7937 and 

14705 cm
-1

, respectively, while the spacer is 𝑑 = 16 nm. In all panels the radii of the disks are 120 nm. 

The period of the array is 𝐿 = 400 nm. 

The extinction (defined as 1 − |𝑇|2, with 𝑇 being the amplitude transmission coefficient) spectra 

for different values of the spacer thickness, 𝑑, is shown in Figure 1c. As a reference, the 

extinction for a single gold disk is represented by the black curve, showing one dipolar SPP 

resonance around 𝜆 = 760 nm (𝜔 = 13158 cm
-1

). When the antenna is composed of the two 

disks, the dipolar SPP modes of the upper and lower disks couple, building up the hybridized 

bonding and anti-bonding modes.
[17]

 Accordingly, the extinction spectrum of the dimer manifests 

two peaks (colored curves in Figure 1c), with the distance between them being increased as 𝑑 

decreases. While the anti-bonding (high-frequency) mode remains almost at the same spectral 
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position (near 𝜔 = 14500 cm
-1

), the bonding (low-frequency) mode quickly moves away 

towards mid-IR frequencies. The effective repulsion of the two resonant peaks is more clearly 

visible in the colorplot representing the extinction as a function of both 𝜔 and 𝑑 (Figure 1d). 

As it is clearly seen from Figure 1d, for 𝑑 > 𝑅 the resonant wavelengths of the bonding and 

antibonding modes are symmetrically shifted to longer and shorter wavelengths, respectively, 

with respect to the resonant wavelength of a single disk. These shifts are the manifestation of the 

interaction between the two disks via the common dipole field, see the Supporting Information. It 

turns out that according to the quasistatic approximation (assuming that the spheroid is small 

compared to the resonant wavelength of the mode) the resonant wavelengths of the vertical 

dimer for 𝑑 > 𝑅 are  𝜆± ≈ 𝜆𝑟(1 ∓ 𝛽/2). Here, 𝜆𝑟 is the resonant wavelength of a single disk 

(S4) and 𝛽 is the coupling between the disks. This coupling is proportional to (1 + 𝑑/𝑤)−2 so 

that the separation between the resonant wavelengths increases as the distance between the disks 

 𝑑 decreases. The model is developed for 𝑑 > 𝑅 but the same functional dependence on 𝑑 can be 

used for the bonding mode in a wider parameter space: 𝜆𝐵/𝜆𝑟 = 1 + 𝑎/(1 + 𝑑/𝑤)2. Here, 𝜆𝐵 is 

the resonant wavelength of the bonding mode; 𝑎 is a constant defining the integrated spatial 

overlap of the dipolar modes and 𝑤 is the effective size of the overlap. Fitting the parametric 

dependence 𝜆𝐵(𝑑) to the simulation data (Figure 1d, colorplot), we get the values 𝑎 = 4 and 

𝑤 = 8.33 nm. The result of the fit is shown in Figure 1d, by the black dashed curve. Our simple 

expression for the wavelength of the bounding mode is useful for a quick estimate of the 

wavelength of the bonding mode prior to numerical simulations. Moreover, the dependence 𝜆𝐵(𝑑) 

can be used for an order-of-magnitude estimates for disks of different radii since 𝑤 ∼ 𝑅/10 (for 

details, see the discussion about 𝑤 after (S6)).  

Importantly, the strong dependence of the bonding resonance on the spacer thickness allows for 

its significant shift towards low frequencies, down to the mid-IR range. This dependence can be 

used for efficient tuning of the antenna, for example by applying strain or by thermally induced 

melting of a self-assembled layer placed inside the spacer.
[18]

 The coupled oscillators model also 

qualitatively provides the spatial field distribution of the hybridized SPP modes: the effective 

electric in-plane dipoles induced in the upper and lower disks are either parallel (anti-bonding 

mode) or anti-parallel (bonding mode). This result is fully consistent with the in-plane electric 

field spatial distributions found by means of full-wave electromagnetic simulations (Figure 1b, 

black arrows distribution). The bonding and anti-bonding modes can also be easily recognized by 

the anti-symmetric and symmetric spatial distribution of the real part of the vertical component 

of the electric field, 𝐸𝑧 (being proportional to the surface charge density), on the top face of the 

lower disk and on the bottom face of the upper disk (colorplot in Figure 1b).  

Due to the anti-symmetric in-plane electric field distribution (and thus the reduced effective in-

plane dipole moment, preventing an efficient coupling with the incident wave), the peak intensity 

of the bonding mode is lower as compared to the anti-bonding one.
[17]

 In a planar SPP dimer 

(two gold disks located in the same plane next to each other), one of the modes is always dark, 
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i.e. it cannot be excited by a normally-incident light.
[8]

 In contrast, for our vertical SPP dimer, the 

situation is different thanks to the retardation effect (phase shift) between the effective dipoles 

induced in the disks. Therefore, both modes can be excited by a normally-incident plane wave 

even in the case of the symmetric dielectric environment of the vertical SPP dimer. Apart from 

the different symmetry of the fields of the hybridized SPP modes, the spatial distribution of the 

electric field intensity, |𝑬|, is significantly different as well. Namely, while the maxima of |𝑬| of 

the anti-bonding modes are concentrated around the edges of the bottom ring (right panel of 

Figure 1e), the |𝑬| of the bonding mode is strongly “pushed” into the spacer, (left panel in Figure 

1e and the inset). The spatial distribution of |𝑬| provides a hint to the best spatial allocation for 

the sensed material. In particular, the spectral position of the bonding mode should be very 

sensitive to the dielectric permittivity of the spacer. The concept of probing minute amounts of 

materials inside the spacer has recently been suggested for similar “screened” plasmonic modes 

in graphene resonators above a metal pad 
[19]

 and later realized experimentally.
[20, 21]

 

In order to test the sensing functionality of our dual-band SPP dimer antenna, we use two different 

materials: octane and j-aggregate, with their dielectric permittivities 휀oct and 휀j taken from
[22]

 and,
[15]

 

respectively. While octane shows a typical for alkenes absorption resonance of the stretching 

vibration of the C-H bond at mid-IR frequencies (around 𝜔 = 3000 cm
-1

, see Figure 2a), j-aggregate 

has an excitonic absorption peak in the visible range (around 𝜔 = 14500 cm
-1

, see Figure 2b). For 

simplicity of the proof of principle, we consider cylindrically-symmetric shapes of the probed 

materials, preserving the symmetry of the antenna. According to the spatial positions of the |𝑬| 

maxima (Figure 1e), we place 1.4 nm-thick layer of octane (in the form of a disk) between the gold 

disks and 3-nm thick ring of j-aggregate around the bottom gold disk, as shown in the insets to Figure 

2c. The octane disk radius coincides with that of the gold rings, so that its volume is 63.3x10
3
 nm

3
 

(i.e. 3.9x10
-19

 mol) and thus fits 2.35x10
5
 octane molecules. In contrast, the j-aggregate ring has the 

internal radius coinciding with the radius of the gold rings and a width of 3 nm (so that its volume is 

6.9x10
3
 nm

3
), and mimics a single j-aggregate rod (typically found in solutions), rolled around the 

antenna. Figure 2c shows the extinction spectra of the SPP dimer antenna with the molecular layers 

(red solid curve) and with the reference layers having the constant dielectric permittivities 휀1 and 휀2 

(black dashed curves). The values of 휀1 and 휀2 correspond to the average of 휀oct and 휀j, respectively, 

in the shown frequency range. The comparison between the spectra clearly reveals the absorption 

fingerprints in both VIS and mid-IR spectral bands. Remarkably, the visibility of the absorption 

fingerprints exceeds the absorption by the octane disk and j-aggregate ring by about two orders of 

magnitude (see orange and violet curves in Figure 2c). Interestingly, apart from the excitonic 

resonance (approximately repeating the peak of  Im(휀j)) the absorption by the j-aggregate ring also 

shows a broader exciton-polaritonic resonance at higher frequencies, where Re(휀j) takes negative 

values.
[23, 24]

 The observed significant fingerprint enhancement justifies the use of our dual-band 

dimer SPP antenna for surface-enhanced spectroscopy. Notice that from the practical point of view, 

the delivery of the sensed materials in between the gold disks, as well as around the antenna, can 

potentially be realized via nanofluidics.
[25]
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Figure 2. Surface-enhanced dual-band spectroscopy with the SPP dimer antenna. a,b) Real and imaginary 

parts of the dielectric permittivity of octane (a) and j-aggregate (b), as a function of frequency. The 

horizontal dashed lines mark the value of the reference dielectric permittivities. The insets show the 

atomic structure of the molecules. c) Extinction spectra of the SPP dimer antenna with the molecules (red 

solid curve) and with the molecular dielectric permittivities replaced by the reference ones (black dashed 

curve). Orange and violet curves represent the absorption spectra of the octane disk and j-aggregate ring, 

respectively. The parameters of the gold disks are the same as in Figure 1. 

The strong field confinement inside the spacer of the SPP dimer can enable the spectral tuning of 

the bonding resonance by changing the dielectric permittivity of the spacer. An interesting 

possibility to control the dielectric permittivity is via heating of phase change materials, such as, 

for instance, VO2. At the rutile to monoclinic transition temperature (𝑇𝑀 = 67 °C), VO2 exhibits a 

metal to semiconductor transition (Mott transition) in its electronic structure: the rutile phase is 

metallic while the monoclinic phase is semiconducting.
[26]

 As a result, its dielectric permittivity, 

휀VO2, strongly changes with the temperature, 𝑇, around 𝑇 = 𝑇𝑀, particularly in the mid-IR 

frequency range (Figure 3a).
[27, 28]

 For this reason, VO2 has recently been used for active switching 

of SPPs
[29]

 and reconfigurable control of in-plane phonon polariton propagation.
[30]

 To demonstrate 

the tunability of our SPP dimer antenna, we perform the simulation of its extinction spectra, 

placing VO2 between the gold disks (see Figure 3b). As seen in the figure, in the temperature range 

50-60 °C (i.e. heating up the antenna by 10 °C) the mid-IR resonant peak blueshifts by 240 

wavenumbers. The blueshift of the resonance with 𝑇 can be explained by the reduction of the real 

part of 휀VO2 (Figure 3a, solid curves). On the other hand, as the imaginary of 휀VO2 increases with 𝑇 

(Figure 3a, dashed curves), the amplitude of the mid-IR peak decreases. From the results presented 
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in Figure 3, we can directly estimate the figure of merit of the bounding resonance as FOM =

Δλ Δn ∙ FWHM ≈ 4⁄ , where Δλ is the wavelength shift per refractive index change, Δn, and 

FWHM is the full width at half maximum. In contrast, the anti-bonding resonance at the VIS 

frequencies does not display any significant change with 𝑇. Thus, the anti-bonding SPP resonance 

in the VIS range can be used for controlling the bonding SPP resonance in the mid-IR range by 

means of optical pumping.
[31]

 Such pumping can be practically realized with a basic, mW-scale, 

commercial diode laser. For instance, for a thin silicon substrate, the heat flux across the face 1 mm 

in height and 1 cm in width amounts to less than 1 mW. The main expected mechanism of thermal 

losses is due to blackbody radiation, which for a sample temperature of 40 degrees above the 

ambient, results in 30 mW of losses. Notice that previously SPP resonances in plasmonic antennas 

have already been explored for the experimental demonstration of antenna-assisted, optically-

triggered phase transition of VO2 at the near-IR frequencies.
[32]

  

 

Figure 3. Tuning of the mid-IR resonance by heating VO2. a) Real part (solid curves) and imaginary part 

(dashed curves) of the dielectric permittivity of VO2, 휀VO2, as a function of 𝜔, at different temperatures 

(the data is taken from.
[28]

 b) The extinction spectra of the SPP dimer antenna at different temperatures 

(close to Mott transition) in the VIS and mid-IR ranges. The parameters of the gold disks are the same as 

in Figures 1,2 and VO2 spacer is 𝑑 = 6 nm.  
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In conclusion, we have suggested a simple dual-band vertical dimer antenna exhibiting SPP 

resonances simultaneously in the VIS and mid-IR frequency ranges. We have shown the tuning 

of the mid-IR resonance by means of heating the phase-change material (VO2) placed in the 

spacer between the gold disks. The heating of VO2 can be realized by resonant pumping of the 

anti-bonding SPP mode with a mW-scale, visible laser. We have demonstrated the potential of 

the SPP dimer antenna for dual-band surface enhanced spectroscopy. Although we have 

illustrated the identification of the fingerprints of two different molecules, such dual-band 

spectroscopy can also be used for identification of the same material (molecules) having its 

fingerprints in the VIS and mid-IR frequency regions. Moreover, with proper matching of the 

oscillator strength of the SPP resonances to that of the molecular absorption resonances, one can 

potentially achieve strong coupling between the SPPs of the antenna and the molecule, 

simultaneously in the VIS and mid-IR ranges. From a different perspective, our findings can 

pave the way to enhancing the efficiency of the Förster resonance energy transfer or photon 

upconversion applications (e.g. solar spectrum conversion for photovoltaics). 
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Supporting Information  

 

Qualitative analytical Model of the dual-band antenna 

1. The eigenfrequency and eigenmode of a single disk 

Consider a single gold disk of radius 𝑅 and height ℎ as in Figure 1a. We choose to approximate 

it by an oblate spheroid with the major and minor semi-axes being equal to 𝑅 and ℎ/2, 

correspondingly, see Figure S1a. In the limiting case ℎ → 0, the oblate spheroid becomes an 

infinitesimally thin disk.  

To simplify our analysis of the eigenvalue problem of plasmonic mode excitation in the oblate 

spheroid, we consider the quasistatic approximation assuming that the spheroid is small 

compared to the resonant wavelength of the mode, i.e. 2𝜋𝑅/𝜆r ≪ 1. In this approximation, we 

neglect the retardation effect due to the finite speed of electromagentic wave propagation. 

Then, the plasmonic mode is governed by the Laplace equation and the solution in oblate 

spheroidal coordinates can be found in[i]. For convenience, we present here a solution for the 

dipolar mode of interest: The electric potential reads: 

 𝜑 = 𝑃2
1(𝜂)𝑃2

1(𝑖𝜉)𝑄2
1(𝑖𝜉0)e𝑖𝜙, 𝜉 < 𝜉0; (S1a) 

 𝜑 = 𝑃2
1(𝜂)𝑃2

1(𝑖𝜉0)𝑄2
1(𝑖𝜉)e𝑖𝜙, 𝜉 > 𝜉0. (S1b) 

Here, 𝑃2
1(𝑥) and 𝑄2

1(𝑥) are the associated Legendre functions of the second kind. The Cartesian 

coordinates (𝑥, 𝑦, 𝑧) are related to the oblate spheroidal coordinates (𝜉, 𝜂, 𝜙) by[ii]  

𝑥 = 𝑓√(1 − 𝜂2)(1 + 𝜉2) cos 𝜙 , 

𝑦 = 𝑓√(1 − 𝜂2)(1 + 𝜉2) sin 𝜙 , 

𝑧 = 𝑓𝜉𝜂. 

Here, 𝑓  is the distance between the focal points of the ellipse forming the spheroid. The 

oblate spheroidal coordinates change in the range: 0 < 𝜉 < ∞, −1 < 𝜂 < 1, 0 < 𝜙 < 2𝜋. 

The coordinate surfaces  𝜉 = 𝑐𝑜𝑛𝑠𝑡 and  𝜂 = 𝑐𝑜𝑛𝑠𝑡 form ellipsoids and half-hyperboloids of 

revolution, respectively, see Figure S1b. The 𝑧-axis is the axis of revolution. The surface 

𝜉 = 𝜉0 corresponds to the surface of the oblate spheroid in question with  𝜉0 being defined 

as 

 𝜉0 =
ℎ/2

√𝑅2−ℎ2/4
. 

To understand better the spatial structure of the plasmonic mode, it is useful to consider the 

surface charge density depicted in Figure S1a. This quantity can be calculated from the 

potential (S1) as 
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 𝜎 =
𝜀𝑑−1

4𝜋
𝐧 ⋅ 𝐄 =

𝜀𝑑−1

4𝜋
𝐸 𝜉 =

ε𝑑−1

4𝜋
ℎ 𝜉

𝜕𝜑

𝜕𝜉
|

𝜉=𝜉0

 , (S2) 

where ℎ𝜉 = √(𝜉2 + 𝜂2)/(1 + 𝜉2) is the Lamé coefficient and 휀𝑑 is the dielectric permittivity of 

the spheroid. For a very oblate spheroid, 𝜉0 ≪ 1, 𝐸𝜉  is approximately equal to the Cartesian  𝑧-

component of the electric field, i.e. 𝐸𝜉 ≈ 𝐸𝑧. 

    

Figure S1. Panel a: surface charge density of the dipolar plasmonic mode of an oblate spheroidal. The 

electric dipole, electric and magnetic fields at the origin of the local coordinate system (𝑥′, 𝑦′, 𝑧′) are 

represented by 𝐏, 𝐄 and 𝐇, respectively. Panel b: coordinate lines of oblate spheroidal coordinates 

𝜉 = 𝑐𝑜𝑛𝑠𝑡 and 𝜂 = 𝑐𝑜𝑛𝑠𝑡 in the Cartesian coordinate system (𝑥, 𝑧). 

On each face of the spheroid, the charge density has a maximum and a minimum separated by 

the distance being approximately equal to 𝑅. Hence, the charge density forms a distributed 

electric dipole density with the strength 𝑃 ≈ |𝜎|𝑅/2. On the other face, the positions of the 

maximum and minimum are swapped so that the orientation of the dipole is reversed. At the 

origin of the local Cartesian coordinate system (𝑥′, 𝑦′, 𝑧′), see Figure S1a (the global Cartesian 

system is (𝑥, 𝑦, 𝑧)), the electric field 𝐄 is simply oriented along the 𝑥′-axis whereas the electric 

dipole is pointing in the opposite direction. The magnetic field 𝐇 is orthogonal to 𝐏 and 𝐄,  and 

directed along the 𝑦′-axis. This type of the distribution of the surface charge density and 

electric field is termed the dipolar mode. Note that the quasistatic result (S1) accurately 

captures the charge and field distributions. cf. Figure S1a and Figure 1b.  

The dispersion equation of the dipolar mode of an oblate spheroid reads [i]: 

 
𝜀𝑑(𝜔)

𝜀𝑒(𝜔)
=

(𝑄2
1(𝑖𝜉0))

′
𝑃2

1(𝑖𝜉0)

(𝑃2
1(𝑖𝜉0))

′
𝑄2

1(𝑖𝜉0)
 (S3) 

where 휀𝑑(𝜔) and 휀𝑒(𝜔) are the dielectric permittivities of the (gold) spheroid and the 

surrounding environment, respectively; the prime stands for the derivative with respect to 𝜉0. 

The solution to the Equation (S3) gives resonant frequencies (eigenfrequencies) of the dipolar 
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mode.  Using the Drude model for 휀𝑑(𝜔),  휀𝑑(𝜔) = 휀0 − 𝜔𝑝
2/𝜔2, the resonant frequency of the 

dipolar mode can be written as 

 𝜔𝑟 =
𝜔𝑝

√𝜀0+|RHS| 𝜀𝑒
, (S4) 

where RHS is the right-hand side of Equation (S3). Recall that all results of this section are 

derived in the quasistatic approximation 2𝜋𝑅/𝜆r ≪ 1  and the smaller the nanoparticle, the 

higher the accuracy is.  For our geometrical parameters, the free-space resonant wavelength is 

553 nm according to (S4) and it is 760 nm in full-wave simulations. Despite some discrepancy 

because of large 𝑅, (S4) can be used as a starting point in numerical simulations.   

1.2. Excitation of the double-disk resonator 

Consider two gold disks that share the same symmetry axis (oriented along the 𝑧-axis) forming 

a vertical dimer. We will mostly be interested in the resonant frequencies of the dimer. Let an 

external electromagnetic wave with the electric and magnetic vectors 𝐄𝟎, 𝐇𝟎 excite resonantly 

only the dipolar mode analyzed earlier. In our simplified consideration, we assume that the 

vertical separation between the disks  𝑑 is sufficiently large such that the plasmonic modes of 

the disks are weakly coupled through their dipole fields. From the potential (S1) it follows that 

the field distribution of the dipolar mode of a single disk, 𝐄𝐝 𝐇𝐝, decays to zero at the distance 

equal to 𝑅. Hence, the model presented below is applicable for 𝑑 > 𝑅. Then, the 

electromagnetic field distribution of the dimer can be approximated by the sum of the field 

distributions of the individual disks. The amplitudes of the fields excited in the 1st and 2nd 

disks, 𝑉1 and 𝑉2, are governed by the excitation equations[iii]: 

  
𝜕2𝑉1

𝜕𝑡2 + 𝜔𝑟
2𝑉1 = −

1

2𝑊𝑑
∬

𝜕

𝜕𝑡
(𝐢𝟎𝟏 + 𝐢𝟏𝟐) ⋅ 𝐄𝐝 𝑑𝑆, (S5a) 

  
𝜕22

𝜕𝑡2 + 𝜔𝑟
2𝑉2 = −

1

2𝑊𝑑
∬

𝜕

𝜕𝑡
(𝐢𝟎𝟐 + 𝐢𝟐𝟏) ⋅ 𝐄𝐝 𝑑𝑆. (S5b) 

Here,  𝐢𝟎𝟏 and  𝐢𝟎𝟐 are the surface currents on the 1st and 2nd disks, respectively, due to the 

external excitation field 𝐄𝟎, 𝐇𝟎; 𝐢𝟏𝟐 is the surface current on the 1st disk due to the dipole field 

of the 2nd disk whereas 𝐢𝟐𝟏 is the surface current on the 2nd disk due to the 1st one; 

𝑊 = 휀/8𝜋 ∫ 𝐸𝑑
2d𝑉′

𝑉
 is the electromagnetic energy of the mode and the integral is taken over 

the whole volume occupied by the mode. The disk, which is further away from the source by 𝑑, 

will be excited with a phase delay of 𝑘𝑑, i.e. 𝐢𝟎𝟐 ∝ e𝑖𝑘𝑑𝐢𝟎𝟏, where  𝑘 = 2𝜋/𝜆 is the wavenumber.  

The excitation equation (S5) has originally the source term in the form[3]  
1

2𝑊𝑑
∭

𝜕

𝜕𝑡
𝐣 ⋅ 𝐄𝐝 𝑑𝑉, 

where j is the current density. Since the field distribution in the disk (spheroid) is 

approximately constant along the coordinate normal to the surface, we take one integral and 

reduce the source term to the surface integral in (S5). 

The surface current can be expressed through the magnetic field exciting it as: 
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 𝐢 =
𝑐

4𝜋
 𝐧 × 𝐇, 

where 𝐧 is the normal to the surface.  For a plane wave 𝐇 = 𝐧 × 𝐄, thus  𝐢 = −𝑐/(4𝜋)𝐄. In the 

near-field zone, the magnetic field of a dipole with the strength 𝐏 reads[iv]: 

 𝐇 =
1

4𝜋𝑟2
𝐧 × �̇�, 

where 𝑟 is the distance from the source to the observer. After some algebra, one finds that 

 𝐢 = −𝑐/(16𝜋2𝑟2)�̇�, which allows one to calculate the impact of one disk on another. 

We consider excitation by a plane, 𝑠-polarized wave with the electric vector being oriented 

along the 𝑥-axis. Then, the excitation equations take on the following form: 

  
𝜕2𝑉1

𝜕𝑡2
+ 𝜔𝑟

2𝑉1 =
𝑐

8𝜋

1

𝑊𝑑
∬ �̇�0,𝑥 𝐸𝑑,𝑥 𝑑𝑆 + �̈�2

𝑅𝑐

16𝜋2

𝜀𝑑−1

16𝜋

1

𝑊𝑑
∬

|𝐸𝑑,𝑧 (𝑥′,𝑦′)|𝐸𝑑,𝑥(𝑥,𝑦)

|r−r′|2
 𝑑𝑆𝑑𝑆′, (S6a) 

  
𝜕2𝑉2

𝜕𝑡2 + 𝜔𝑟
2𝑉2 =

𝑐

8𝜋

e𝑖𝑘𝑑

𝑊𝑑
∬ 𝑔�̇�0,𝑥 𝐸𝑑,𝑥 𝑑𝑆 + �̈�1

𝑅𝑐

16𝜋2

𝜀𝑑−1

16𝜋

1

𝑊𝑑
∬

|𝐸𝑑,𝑧 (𝑥′,𝑦′)|𝐸𝑑,𝑥(𝑥,𝑦)

|r−r′|2  𝑑𝑆𝑑𝑆′. (S6b) 

Here, the subscripts 𝑥 and  𝑧 are used to denote the 𝑥- and 𝑧-components of the vector; 𝑔 is 

the phenomenological factor that accounts for screening of the incident field by another 

disk. The second term in the right-hand side of (S6a) and (S6b) contains the double surface 

integral which accounts for all elementary dipoles. The integral 

∬(1/|r − r′|2) |𝐸𝑑,𝑧 |𝐸𝑑,𝑥 𝑑𝑆𝑑𝑆′ depends only on the distance between the disks while the 

transverse coordinates are clearly integrated out. This type of the integral often appears in 

beam physics and while the exact calculation of it is not straightforward, it turns out that 

the result of integration can be approximated by a simple function[v] 𝐵(1 + 𝑑/𝑤)−2 . The 

parameters 𝐵 and  𝑤 can be found by fitting this function to the result of numerical 

integration. The physical meaning of  𝑤 is the characteristic size of the region in which the 

field distributions 𝐸𝑑,𝑥 and 𝐸𝑑,𝑧 overlap. From the surface charge distribution in Figure S1a, 

one can realize that 𝐸𝑑,𝑥 attains its maximum in between the extrema of the charge 

whereas the maximum and minimum of  𝐸𝑑,𝑧 correspond to those of the charge density. 

Clearly, the overlap between 𝐸𝑑,𝑥 and 𝐸𝑑,𝑧 is small and very roughly an order of magnitude 

smaller than the disk (spheroid) radius. The parameter 𝐵 can be thought of as the 

electrostatic energy of interaction of the physical surface charge density 𝜎(𝑥, 𝑦) and a 

virtual charge density 𝜎′(𝑥, 𝑦) = 𝐸𝑑,𝑥/4𝜋.  

1.3. Double-disk resonator as a system of coupled oscillators 

By introducing auxiliary notations, we can rewrite (S6a) and (S6b) in the form: 

  
𝜕2𝑉1

𝜕𝑡2 + 𝜔𝑟
2𝑉1 = 𝛼𝜔𝑟

2 + 𝛽�̈�2, (S7a) 

  
𝜕2𝑉2

𝜕𝑡2
+ 𝜔𝑟

2𝑉2 = e𝑖𝑘𝑑𝛼𝜔𝑟
2 + 𝛽�̈�1. (S7b) 
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The values of 𝛼 and  𝛽 can easily be found by comparing (S7) and (S6). The set of Equations 

(S7a) and (S7b) describe a well-known model of two coupled oscillators and we seek a 

solution in the form 𝑉 ∝ e𝑖𝜔𝑡. Clearly, in a zero order approximation in 𝛽, 𝛽 = 0, the most 

efficient excitation occurs at the resonant frequency, 𝜔 = 𝜔𝑟 , so that  𝑉 ∝ e𝑖𝜔𝑟𝑡. For 𝛽 ≠ 0, the 

eigenfrequencies of the vertical dimer are : 

  𝜔± =
𝜔𝑟

√1∓𝛽
≈ 𝜔𝑟 (1 ±

𝛽

2
). (S8) 

The separation between the eigenfrequencies increases with the coupling  𝛽 as  𝛽𝜔𝑟 – a well-

known effect in the theory of oscillations. The corresponding free-space wavelength 

(𝜆 = 2𝜋𝑐/𝜔) is 𝜆∓ = 2𝜋𝑐/𝜔± = 𝜆𝑟√1 ∓ 𝛽. Recalling that in (S7) the coupling 𝛽 ∝

(1 + 𝑑/𝑤)−2, we see that the separation between the eigenfrequencies increases as the 

distance between the disks  𝑑 decreases. This supports the results of numerical simulations for 

𝑑 > 𝑅 shown in Figure 1d. Finally, we re-write the expression for the resonant wavelengths in 

a convenient parametric form: 

   𝜆∓ = 𝜆𝑟 (1 ±
𝑎

(1+𝑑/𝑤)2). (S9) 

Recall that the result (S9) has been derived under the approximation  𝑑 > 𝑅 (the separation 

between the disks is larger than the disk radius), i.e. the disks are coupled through their dipole 

fields whereas the field distributions of the plasmonic modes do not overlap. At the same time, 

the comparison with the numerical simulations, see Fig. 1d, showed that the functional 

dependence on 𝑑 in the Equation (S9) is valid even for 𝑑 < 𝑅. Then, by fitting the result (S9) to 

the corresponding result of our numerical simulations, we found the values  𝑎 and 𝑤, which are 

valid for all 𝑑. It turned out that 𝑎 = 4 nm and 𝑤 = 8.33 nm. This allows using the Equation 

(S9) for quick analytical estimates for values of 𝑑, for example, outside the simulation region 

presented in Fig. 1d . Moreover, the result (S9) can be used for an order-of-magnitude 

estimates for disks of different radii since 𝑤 ∼ 𝑅/10  (see the discussion about 𝑤 after (S6)). 
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