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Two-dimensional (2D) Rashba systems have been intensively studied in the last decade due to their
unconventional physics, tunability capabilities, and potential for spin-charge interconversion when compared
to conventional heavy metals. With the advent of a new generation of spin-based logic and memory devices,
the search for Rashba systems with more robust and larger conversion efficiencies is expanding. Conventionally,
demanding techniques such as angle- and spin-resolved photoemission spectroscopy are required to determine
the Rashba parameter αR that characterizes these systems. Here, we introduce a simple method that allows a
quantitative extraction of αR, through the analysis of the bilinear response of angle-dependent magnetotransport
experiments. This method is based on the modulation of the Rashba-split bands under a rotating in-plane
magnetic field. We show that our method is able to correctly yield the value of αR for a wide range of Fermi
energies in the 2D electron gas at the LaAlO3/SrTiO3 interface. By applying a gate voltage, we observe a
maximum αR in the region of the band structure where interband effects maximize the Rashba effect, consistent
with theoretical predictions.

DOI: 10.1103/PhysRevMaterials.4.071001

I. INTRODUCTION

Magnetotransport phenomena in low-dimensional systems
are extremely useful for applications in (nano)electronic de-
vices. After a first generation of spintronic devices based
on metallic magnetic multilayers [1–7], the next generation
exploits the idea of a full electrical control of the spin degree
of freedom via electrically-induced spin torques of various
origins. In this context, a key objective is to exploit spin-orbit
coupling to achieve efficient charge-to-spin interconversion,
owing to the spin Hall effect [8–11] or the current-induced
spin density also known as the inverse spin-galvanic effect, or
alternatively as the Edelstein effect [12–15].

While in the beginning of the study of the Edelstein effect
great emphasis was put on semiconducting heterostructures,
owing to their strong bulk and structural inversion asym-
metries [16–18], nowadays two-dimensional (2D) systems
show the most promise, with encouraging results found at
the surfaces of topological insulators (TIs), two-dimensional
graphenelike heterostructures, and oxide interfaces [19–23].
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In these systems, the Rashba spin-orbit coupling acts as an
internal momentum-dependent magnetic field that ensures
a fixed relative orientation between the electron spin and
momentum, an effect known as spin-momentum locking.

Recently, a new kind of magnetoresistance, the bilinear
magnetoresistance (BMR), was reported in materials with
strong spin-orbit coupling [24,25]. Here, two resistive states
are observed depending on the relative orientation between
the applied (bias) electric field and the magnetic field, as
shown in Fig. 1(a). In contrast with other recently reported
unidirectional magnetoresistance effects (e.g., spin Hall mag-
netoresistance in multilayered systems), the BMR appears
in a single material. The effect was observed in topological
insulators [24] and in materials having surface or interface
two-dimensional electron gases (2DEG) with Rashba inter-
actions. For the latter, clear experimental evidence has been
shown at the surface states of Ge(111), where the BMR in a
magnetic field of 1 T represented 0.5% of the zero field resis-
tance and was larger than the magnetoresistance of standard
symmetry [26].

The BMR of the metallic surface states of Ge was inter-
preted by taking into account the locking αR(k × z) · σ be-
tween spin σ and momentum k in a Rashba 2DEG [Fig. 1(b)].
As shown in Fig. 1(c), the shift �k of the Fermi contour in
the presence of a current j and the resulting nonequilibrium
energy �ε ∼ αR(�k × z) · σ, with �k ∼ j, can be described
by the introduction of a magnetic field B j ∼ αR(j × z) acting
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FIG. 1. (a) Schematic of the BMR measurement setup under a rotating in-plane magnetic field B. Two different resistive states are expected
when B (black arrows) is perpendicular to the applied current I (red arrows). (b) Schematic of the electronic and spin structure of a 2D Rashba
system. Arrows represent the electron spin. (c) Schematic of the shift of a Fermi contour by a bias current j, generating a nonequilibrium spin
density S (Edelstein effect [12–15]). The blue (white) arrow represents the orientation of accumulated (depleted) spins. (d) Effective magnetic
field Beff as a result of the current-induced magnetic field B j (with its sign depending on the polarity of the applied current) and a rotating
external field Bext (adapted from Ref. [26]).

on the spin σ. The field B j adds to the external field Bext,
as shown in Fig. 1(d). Depending on the direction of the
current, B j is added to (or subtracted from) the component of
the applied field perpendicular to the current, and the BMR
appears in cross terms between Bext and B j . Guillet et al.
[26] derived the Rashba parameter from the ratio between the
BMR and the quadratic MR in Bext.

In this paper, we propose a microscopic theory of the
BMR for Rashba 2DEGs. The mechanism is related to the
existence of a current-induced magnetic field acting on the
electron spins in systems with spin-momentum locking, and
it dominates when the Rashba coupling is much larger than
the Zeeman field. We apply the model to the interpretation
of experimental results in the LaAlO3/SrTiO3 (LAO/STO)
system. As will be discussed, we develop the theory for
the simple case of a single pair of circular Fermi contours
characterized by a Rashba parameter. While in LAO/STO the
BMR can be measured at different Fermi levels with different
Fermi contours and Rashba splittings, the analysis shows a
good agreement with results from tight-binding calculations
even in the multiband regime. The fit of the model with the
experimental BMR in a given voltage range thus provides
us with an effective value of the Rashba parameter in the
corresponding Fermi energy range. We demonstrate that the
BMR signal may serve as a useful tool to characterize spin-to-
charge interconversion efficiencies and to probe the strength
of spin-orbit coupling in 2D systems. According to our
proposition, an effective Rashba parameter can be determined
solely based on the relative amplitudes of the quadratic and
bilinear magnetoresistance terms, carrier density, and electron
effective mass.

II. THEORETICAL MODEL

The electronic states of a two-dimensional Rashba gas are
described by the following Hamiltonian in the plane-wave
basis:

ĤR = h̄2k2

2m∗ σ0 + αR(kyσx − kxσy), (1)

where m∗ is the effective electron mass, αR is the Rashba
parameter, k2 = k2

x + k2
y , and σ j ( j = {0, x, y, z}) are the unit

and Pauli matrices acting in spin space. The Hamiltonian (1)
above has two eigenvalues: ε± = h̄2k2

2m∗ ± αRk.

A. Semiclassical picture

For an electric field in the x̂ direction (Ex) and a relaxation
time τ , the momentum k acquires an extra component �kx =
eExτ/h̄ (e < 0) which, from Eq. (1), leads to a nonequilibrium
term αR�kxσy = −αReτExσy/h̄. This term is equivalent to an
interaction with a current-induced Rashba field B j along the ŷ
axis, as shown in Fig. 1(d), with gμBBj y = b j y = −αReτEx/h̄
[more generally, b j = −αReτ (ẑ × E)/h̄]. Here, b = gμBB is
given in energy units, where B is the magnetic field, g the elec-
tron g factor, and μB the Bohr magneton. It is also convenient
to relate the field b j y to the nonequilibrium Edelstein spin
polarization S (see Fig. 1(c) and Refs. [12–15]) induced by the
current, Sy = αRm∗

2π h̄ �kx for E along x̂. A straightforward cal-
culation leads to the relation b j y = J Sy, where J = −2π h̄

m∗
and its sign changes for opposite signs of the effective mass
m∗ (more details in Ref. [27]).

B. Microscopic description of BMR in a Rashba 2DEG

To calculate the BMR we use the approach proposed re-
cently by Dyrdał et al. [25]. In the presence of external electric
and magnetic fields, the total Hamiltonian can be written in the
following form:

Ĥkk′ = [
Ĥ0

k + ĤA
k

]
δkk′ + V̂ imp

kk′ (2)

Ĥ0
k = ĤR + Ĥbeff (3)

Ĥbeff = b · σ + b j · σ ≡ beff · σ, (4)

where ĤA
k = −ev̂ · A describes the coupling of the charge

carriers to an external in-plane dynamical electric field. Here,
v̂ is the velocity operator and A denotes electromagnetic
vector potential, A(t ) = Aω expiωt/h̄ with Aω = h̄

iω Eω. The
term b · σ describes the coupling of the electron spin to an
external in-plane magnetic field b = (bx, by). The term b j · σ

expresses the coupling of the spin with the current-induced
field described in Sec. II A. Without losing generality, one
can assume that the external electric field is applied in the x̂
direction. Thus, ĤA

k = −ev̂xAx, and b j · σ = J Syσy.
The relaxation occurs due to scattering from randomly-

distributed pointlike impurities. The potential V (r) is
assumed to be short range with zero average 〈V (r)〉 = 0,
and the second statistical moment 〈V (r)V (r′)〉 = wδ(r − r′).
For impurities distributed randomly at points ri, the
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potential V (r) = ∑
i v(r − ri ) = ∑

i v0δ(r − ri ), where v0 is
the potential of a single impurity and w = niv

2
0 . Thus, V̂ imp

kk′ =
Vkk′σ0.

C. Relaxation time and conductivity

The relaxation time and conductivity have been calculated
within the Green’s function formalism. The self-consistent
Born approximation is used to find the relaxation rate 
 (or
relaxation time τ ). An important finding is that the relaxation
rate/time is dependent on the external magnetic field and
nonequilibrium spin density:


(b) = h̄

2τb
= 
0

[
1 + 3

(J bySy

4
2
0

+ b2

8
2
0

)]
, (5)

where 
0 = niV 2
0

m∗
2h̄2 ≡ h̄

2τ0
is the relaxation rate in the absence

of a magnetic field, 
0 = 
(b = 0).
In turn, the longitudinal conductivity can be calculated

from the expression [28,29]:

σxx = e2h̄

2π

〈
Tr

∫
d2k

(2π )2
v̂xGR

k v̂xGA
k

〉
, (6)

where 〈...〉 denotes the disorder average. In the simplest case,
〈vxGRvxGA〉 can be replaced by vxḠRVxḠA, where ḠR,A is the
impurity averaged Green’s function and Vx is the renormalized
velocity related to the vertex correction. Since the effective
magnetic field is small and treated perturbatively, one can
neglect its influence on the impurity vertex correction and
consider the Hamiltonian of the 2DEG with only the Rashba
term. In such a case, it is known that the impurity correc-
tions to the velocity vertex function lead to cancellation of
the so-called anomalous velocity, and Vx = h̄kx

m∗ σ0 (see, e.g.,
Refs. [30,31]).

Taking into account the impurity vertex correction and
expanding Green’s functions with respect to the effective
magnetic field beff , we arrive at the final expression for the
diagonal resistivity

ρxx = ρ0
xx + 3π

4

h

e2

[
αRτ0

|e|
jxb sin φ

ε2
R + ε2

F

+ εF τ0

h

b2 cos(2φ)

ε2
R + ε2

F

]
,

(7)
where ρ0

xx = ρxx(B = 0) = h
e2


0εF

ε2
F +ε2

R
, εF is the Fermi energy,

and εR = αRk0 defines the Rashba energy (Rashba field) in the
system (here k0 = √

2m∗εF /h̄). This expression clearly shows
that even for a simple scalar scattering potential of pointlike
impurities, a bilinear magnetoresistance proportional to j and
B appears, which reveals a sin(φ) angular dependence with an
oscillation period of 2π .

D. Magnetoresistance

In the following we briefly discuss the behavior
of the magnetoresistance MR = [ρxx(B) − ρxx(B = 0)] ob-
tained within the model under consideration. First, we
extract the bilinear and B-quadratic (symmetric) com-
ponents of the magnetoresistance following the defini-
tions: BMR = [MR(B, jx = + j) − MR(B, jx = − j)]/2 and
QMR = [MR(B, jx = + j) + MR(B, jx = − j)]/2. Thus, the

bilinear and quadratic magnetoresistance can be expressed as
follows:

BMR = ABMR
jx
j

sin φ, (8)

QMR = AQMR cos(2φ), (9)

with the amplitudes

ABMR = 3π

4

h

e2

gμB

|e|
αRτ

ε2
R + ε2

F

jB, (10)

AQMR = 3π

4

(gμB)2

e2

εF τ

ε2
R + ε2

F

B2. (11)

When we use the normalized magnetoresistance, MR =
[ρxx(B) − ρxx(B = 0)]/ρxx(B = 0), Eqs. (8) and (9) still hold,
but the amplitudes of BMR and QMR take the forms:

ABMR = 3

2
π

gμB

|e|h̄
αRτ 2

εF
jB, (12)

AQMR = 3

4

(gμB

h̄

)2
τ 2B2. (13)

From Eqs. (8) and (9) follows that the QMR oscillates with
the periodicity of π (as it is observed in usual anisotropic
magnetoresistance experiments), whereas the BMR oscillates
with the periodicity of 2π . This behavior results in a well
pronounced asymmetry between φ = π/2 and φ = 3π/2 in
the angular dependence of the total magnetoresistance, as well
as in an asymmetry of the total magnetoresistance for currents
flowing in opposite directions. From Eq. (13), the amplitude
of the QMR is expected to scale quadratically with an external
magnetic field, a trend governed by the relaxation time τ in the
system. From Eq. (12), the amplitude of the BMR is expected
to scale linearly with both applied current and external mag-
netic field. Here, besides the dependence on external stimuli,
ABMR also depends on material-dependent parameters, such as
the relaxation time τ , the Rashba parameter αR, and the Fermi
energy εF . Lastly, the ratio between both amplitudes:

ABMR

AQMR
≡ CS = 2π h̄

|e|gμB

αR

εF

j

B
(14)

gives a τ -independent relation from which αR can be found
experimentally, provided that εF and g are known. Here,
this ratio is expressed by universal constants, the ratio of
externally-controlled parameters, j and B, and αR. Thus, this
ratio, directly proportional to αR, is a quantity characterizing
the Rashba coupling. Moreover, even in the case of a more
complex multiorbital band structure strongly modified by
spin-orbit interactions, the experimentally derived CS can
still provide a reasonable estimation of the magnitude of spin-
orbit related effects, where an effective Rashba parameter may
be considered [αR → αeff in Eqs. (12) and (14)]. However, in
this regime the model has to be used with caution, since a sim-
ple Rashba model cannot properly describe highly anisotropic
Fermi contours. In the following section we describe why this
approximation is reasonable for the system studied.

III. EXPERIMENTAL RESULTS

We have performed angle-dependent transport experiments
in the prototypical Rashba 2DEG found at the interface

071001-3



D. C. VAZ et al. PHYSICAL REVIEW MATERIALS 4, 071001(R) (2020)

g

40

30

20

10

0

-10

1

0.5

0

-0.5

-1
-8 -6 -4 -2 0 2 4 6 8

-8 -6 -4 - 2  0 2 4 6 8

0 50 100 150

1013

1

0

2

0 50 100150
Vg (V)

102

103

104

R
s

(
/s

q)

LAO//STO
2DEG

2 µm

I

VHall

Vg

B

(a) (b)

(c) (d)
VMR

x

y

z

z

z

FIG. 2. (a) Optical microscope image of a LAO/STO Hall bar
device (b) Magnetoresistance (MR) and sheet resistance RS (inset)
measurements as a function of the back-gate voltage Vg. (c) Hall
measurements as a function of Vg. (d) Carrier densities n1 and n2,
extracted from a two-band model fit of the Hall curves (considering
different effective electron masses).

of LaAlO3/SrTiO3 (LAO/STO) oxide heterostructures. Hall
bar devices [see Fig. 2(a)] were fabricated on LAO (1 unit
cell)/STO through a combination of electron-beam lithogra-
phy and a room-temperature deposition of a-LAO (30 nm)
using pulsed laser deposition (more details in Ref. [32]). As
shown in Fig. 2(b), at low temperatures the device exhibits
a positive magnetoresistance in the doped regime (applying
a back-gate voltage of Vg = 150 V) and a negative magne-
toresistance in the depleted regime (Vg = −30 V), signaling
the well-known transition between weak antilocalization and
weak localization regimes [33]. Within this range of gate
voltages, the sheet resistance Rs increases from 200 �/� to
8 k�/� [inset of Fig. 2(b)]. Hall effect measurements as a
function of Vg, shown in Fig. 2(c), confirm the n-type metallic
behavior of the device, similarly to unpatterned samples. By
fitting these curves with a model assuming two types of
charge carriers (with distinct effective mass) contributing to
the conduction, we are able to extract the carrier densities n1

and n2, as shown in Fig. 2(d). For Vg < 60 V, linear Hall
curves are obtained, indicating that only one band contributes
to transport. In this range, the carrier density can be tuned
between about 0.5 and 1.5 × 1013 cm−2. Above this Vg, heavy
electron subbands start to be populated, resulting in slightly
nonlinear Hall curves and a maximum total carrier density of
3 × 1013 cm−2 (at Vg = 150 V).

We now move to the angle-dependent magnetoresistance
experiments. We start by measuring the longitudinal resis-
tance under a rotating in-plane external magnetic field B,
as shown in Fig. 3(a). At φ = 0◦, B lies parallel to the
applied DC current IDC. Under B = 9 T and Vg = 80 V, the
normalized magnetoresistance oscillates with a periodicity of

2π , in agreement with Eq. (9). For opposite polarities of
IDC, a pronounced asymmetry between φ = 90◦ and φ = 270◦

is observed, a signature of the unidirectional and bilinear
response predicted by our model and previously reported in
the Rashba 2DEGs at LAO/STO interfaces [34,35], InAs
quantum wells [36], and Ge(111) [26]. We performed similar
angle-dependent measurements at different magnetic fields
and gate voltages values and extracted the BMR and QMR as
described earlier. We plot in Fig. 3(b) AQMR as a function of
the external magnetic field at Vg = 150 V (angle dependence
in the inset). The data can be fitted with Eq. (13) (solid black
line), confirming the quadratic dependence of AQMR with B.
From the fitting, we extract a relaxation time of τ ∼ 1 ps,
consistent with previous reports in this system within the same
carrier density range [33]. Next, we evaluate AQMR as a func-
tion of Vg at different external magnetic fields [Fig. 3(c)]. By
gating our device, the mobilities increase nonmonotonically
by one order of magnitude, leading to a similar modulation
of the relaxation time, given that τ = (m∗μ)/|e| (for carriers
with a fixed effective mass m∗). From Eq. (13), AQMR is
expected to scale with τ 2, which explains its abrupt increase
for larger mobilities at higher gate voltages.

In Fig. 3(d), we show the asymmetric (or bilinear) part as
a function of B. As shown in Fig. 3(e), the amplitude of this
asymmetric part ABMR is linear with both B and the applied
current density j, thus confirming its bilinearity. ABMR is also
observed to strongly increase with applied Vg, as shown in
Fig. 3(f). However, unlike the gate dependence of AQMR and
according to Eq. (12), ABMR depends not only on τ but also on
the Fermi energy εF and the Rashba parameter αR, rendering
its analysis less trivial.

We use Eq. (14) to extract αR from the ratio ABMR/AQMR,
εF , and the g-factor. The following results at different Vg

correspond to different Fermi energies, different bands, dif-
ferent Fermi contours, and different Rashba parameters, as
will be discussed further ahead. Thus, the interpretation of
the BMR by our model in a given range of gate voltages
characterizes an average value of the Rashba parameter for
the corresponding Fermi contours. We start by calculating
ABMR/AQMR. Since the AQMR fitting was only possible down
to Vg = 60 V, below this gate voltage αR was derived us-
ing Eq. (12) with τso from magnetoresistance fittings to the
Maekawa-Fukuyama formula in Ref. [33], which show a
good agreement when compared with τQMR calculated using
Eq. (13) up to Vg ≈ 100 V. εF can be estimated with εF =
(h̄2πn)/m∗ for single parabolic bands. We note that, together
with g, the estimation of εF is the biggest source of error
when implementing this model, since it requires previous
knowledge of m∗. Nevertheless, using a fixed m∗ = 1.3 m
(m is the electron mass), g = 0.5 (from Ref. [33]), and the
carrier densities showed in Fig. 2(d), we plot in Fig. 4(a) the
calculated αR as a function of Vg. We observe that αR increases
from 2 meV Å up to 50 meV Å at Vg = 120 V, where it reaches
its maximum value. Beyond this, αR rapidly decreases, reach-
ing a value of 20 meV Å at Vg = 150 V. This nonmono-
tonic behavior is reminiscent of recent results in SrTiO3-
based 2DEGs, where the spin-to-charge current conversion
efficiency [37] and spin current generation and detection
[32] were modulated up and down using gate voltages. The
values extracted are in good agreement with the αR reported
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in other studies for the LAO/STO system in similar carrier
density regimes [33,38]. Here, we also highlight that, contrary
to the other methods, our model is applicable to a broader
range of carrier densities, especially where αR takes the
highest values.

We further clarify the origin of this modulation by deriving
values of αR from an eight-band model Hamiltonian (four
Rashba-split bands with opposite spin orientation) composed
of two light dxy bands (lower in energy) and one heavy dyz and
dxz band (higher in energy), as depicted in Fig. 4(b). Details of
the tight-binding modeling can be found in Ref. [37]. We start
by calculating αR = �k(h̄2/2m∗) directly from the energy
spectrum, where �k = kouter − kinner gives the difference of
two neighboring subbands. In order to respect the individual
contribution of each band pair to the QMR and BMR signals,
the mean value αR is calculated as an average of all αR

from each band pair weighted according to their contribution
to the charge conductivity. We observe in Fig. 4(c) that αR

increases from 5 meV Å to a maximum of 40 meV Å at around
εF = −40 meV, coinciding with the crossing between the
heavy dxz,yz and light dxy subbands [38,39], followed by a
sharp decrease similar to what was observed experimentally
in Fig. 4(a). We can identify a critical energy εc (or critical
Vg) up to which the splitting of the subbands may be directly

estimated by a simple Rashba spin-orbit coupling, character-
ized by circular Fermi contours [left panel in Fig. 4(d)]. For
our system, εc ≈ −60 meV, where heavy dxz,yz subbands start
to be populated (also known as Lifshitz transition, represented
with a yellow line in Fig. 4). As follows from the tight binding
model results in Fig. 4(c), below this Lifshitz point αR is
mostly determined by the electronic states originating from
the first pair of subbands. In this range, αR is sufficient to prop-
erly describe the Rashba system, and our analytical formulas
derived for a simple Rashba model fit well to the experimental
data. Above the Lifshitz point the energy spectrum becomes
more complex, as displayed in the right panel of Fig. 4(d),
and αR can no longer be interpreted as a simple Rashba
parameter but rather as an approximation of the spin-orbit
coupling strength in the system, given by αeff (as described in
Sec. II D). Although in this regime the complex nature of the
Fermi contours should in principle prevent us from using our
model, we note that the majority of the conductivity above the
Lifshitz point is in fact carried by the first pair of subbands,
which has the highest density of states. Consequently, in
Fig. 4(c) we observe that the magenta line (bands 1 and 2) has
a very large weight on the mean contribution (black curve).
We conclude that the calculated αeff in this range can be
approximated to the behavior of simple Rashba bands, which
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FIG. 4. (a) Rashba parameter as a function of the back-gate
voltage, extracted using the ABMR/AQMR ratio from Eq. (14) (full
circles) and the ABMR from Eq. (12) with τso from Ref. [33] (open cir-
cles). (b) Top: Band dispersion along the [100] direction, calculated
through an eight-band tight-binding model. Bottom: Zoomed area
with pronounced enhancement of the Rashba splitting. (c) Energy
dependence of the Rashba parameter, calculated for each pair of
Rashba-split bands [colors match the bands in (b)] and for its mean
contribution weighted by the conductivity of each band pair (black
line). Note that for the orange band pair αR has a negative sign,
not shown here for simplicity. (d) Fermi contours below (εF =
−80 meV) and above (εF = −50 meV) the Lifshitz transition. The
yellow vertical lines in (a) and (c) and horizontal lines in (b) corre-
spond to the Lifshitz transition.

gives us a fair comparison with respect to the experimental
data.

IV. CONCLUSION

In summary, we have developed a model of bilinear mag-
netoresistance in Rashba systems, based on the existence of
a current-induced magnetic field that acts on the electron
spins in systems with spin-momentum locking. We employed
this model to study the angle-dependent magnetoresistance
measured in the Rashba 2DEG at the LAO/STO interface
and derived the full gate dependence of αR. A maximum
αR is observed at Vg ≈ 120 V, coinciding with the crossing
between light and heavy subbands, and—importantly—where
other magnetotransport probes of Rashba physics are not
applicable. Lastly, given the increasing interest of large spin-
orbit coupling 2D systems for spin logic and computational
applications [40,41], this model provides a useful tool to study
new Rashba systems with potentially larger αR, which may
exhibit giant spin-to-charge current conversion or spin-orbit
torque effects.
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[7] J. Barnaś and V. K. Dugaev, Giant Magnetoresistance and Ap-
plications in Magnetism of Surfaces, Interfaces, and Nanoscale
Materials, edited by R. E. Camley, Z. Celinski, and R. L.
Stamps (Elsevier, Amsterdam, the Netherlands, 2016).

[8] M. I. Dyakonov and V. I. Perel, Current-induced spin orienta-
tion of electrons in semiconductors, Pis. Zh. Eksp. Teor. Fiz. 13,
657 (1971); Phys. Lett. A 35, 459 (1971).

[9] J. E. Hirsch, Spin Hall Effect, Phys. Rev. Lett. 83, 1834 (1999).
[10] H. A. Engel, E. I. Rashba, and B. I. Halperin, Theory of spin

Hall effect in semiconductors, In “Handbook of Magnetism and
Advanced Magnetic Materials,” Vol. 5, edited by H. Kronmuller
and S. Parkin (Wiley, New York, 2007), pp. 2858–2877.

[11] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T.
Jungwirth, Spin Hall effects, Rev. Mod. Phys. 87, 1213 (2015).

[12] V. M. Edelstein, Spin polarization of conduction electrons
induced by electric current in two-dimensional asymmetric
electron systems, Solid State Commun. 73, 233 (1990).

[13] A. G. Aronov and Yu. B. Lyanda-Geller, Nuclear electric
resonance and orientation of carrier spins by an electric field,
JETP Lett. 50, 431 (1989).

[14] S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W.
Wegscheider, D. Weiss, and W. Prettl, Conversion of Spin into

071001-6

https://doi.org/10.1103/PhysRevLett.61.2472
https://doi.org/10.1103/PhysRevB.39.4828
https://doi.org/10.1103/PhysRevLett.63.664
https://doi.org/10.1103/PhysRevB.42.8110
https://doi.org/10.1016/0375-9601(75)90174-7
https://doi.org/10.1016/0375-9601(71)90196-4
https://doi.org/10.1103/PhysRevLett.83.1834
https://doi.org/10.1103/RevModPhys.87.1213
https://doi.org/10.1016/0038-1098(90)90963-C
http://www.jetpletters.ac.ru/ps/1132/article_17140.shtml


DETERMINING THE RASHBA PARAMETER FROM THE … PHYSICAL REVIEW MATERIALS 4, 071001(R) (2020)

Directed Electric Current in Quantum Wells, Phys. Rev. Lett.
86, 4358 (2001).

[15] S. D. Ganichev, E. L. Ivchenko, V. V. Bel’kov, S. A. Tarasenko,
M. Sollinger, D. Weiss, W. Wegscheider, and W. Prettl, Spin-
galvanic effect, Nature (London) 417, 153 (2002).

[16] D. D. Awschalom and M. E. Flatté, Challenges for semiconduc-
tor spintronics, Nat. Phys. 3, 153 (2007).

[17] R. Winkler, Spin-orbit Coupling Effects in Two-Dimensional
Electron and Hole Systems (Springer-Verlag, Berlin, Heidel-
berg, 2003).

[18] J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Zutic,
Semiconductor Spintronics, Acta Physica Slovaca 57, 565
(2007).

[19] A. Soumyanarayanan, N. Reyren, A. Fert, and C. Panagopoulos,
Emergent phenomena induced by spin-orbit coupling at sur-
faces and interfaces, Nature (London) 539, 509 (2016).

[20] J. Varignon, L. Vila, A. Barthelemy, and M. Bibes, A new spin
for oxide interfaces, Nat. Phys. 14, 322 (2018).

[21] K. Song, D. Soriano, A. W. Cummings, R. Robles, P. Ordejon,
and S. Roche, Spin proximity effects in graphene/topological
insulator heterostructures, Nano Lett. 18, 2033 (2018).

[22] A. W. Cummings, S. O. Valenzuela, F. Ortmann, and S. Roche,
Graphene Spintronics in 2D Materials. Properties and De-
vices, edited by P. Avouris, T. J. Watson, T. F. Heinz, T. Low
(Cambridge University Press, Materials research society, Cam-
bridge, New York, 2017).

[23] W. Han, R. K. Kawakami, M. Gmitra, and J. Fabian, Graphene
spintronics, Nat. Nanotechnol. 9, 794 (2014).

[24] P. He, S. S.-L. Zhang, D. Zhu, Y. Liu, Yi Wang, J. Yu, G.
Vignale, and H. Yang, Bilinear magnetoelectric resistance as a
probe of three-dimensional spin texture in topological surface
states, Nat. Phys. 14, 495 (2018).
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