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We theoretically describe how fast electrons couple to polaritonic modes in uniaxial materials by analyzing
the electron energy-loss spectra. We show that in the case of a uniaxial medium with hyperbolic dispersion,
bulk and surface modes can be excited by a fast electron traveling through the volume or along an infinite
interface between the material and vacuum. Interestingly, and in contrast to excitations in isotropic materials,
bulk modes can be excited by fast electrons traveling outside the uniaxial medium. We demonstrate our findings
with the representative uniaxial material hexagonal boron nitride. We show that the excitation of bulk and surface
phonon polariton modes is strongly related to the electron velocity and highly dependent on the angle between
the electron beam trajectory and the optical axis of the material. Our work provides a systematic study for
understanding bulk and surface polaritons excited by a fast electron beam in hyperbolic materials and sets a way
to steer and control the propagation of the polaritonic waves by changing the electron velocity and its direction.
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I. INTRODUCTION

Polar materials have become of high interest in the field of
nanophotonics due to their ability to support phonon polari-
tons, quasiparticles which result from the coupling between
electromagnetic waves and crystal lattice vibrations [1,2] with
a characteristic wavelength lying in the mid-infrared region.
These quasiparticles can enhance the electromagnetic field
deep below the diffraction limit with large quality factors
compared to infrared plasmons [3–6], making them promis-
ing building blocks for infrared nanophotonics applications
[7–10].

One interesting two-dimensional (2D) polar material is
hexagonal boron nitride (h-BN) because of its high-quality
phonon polaritons and the easy preparation of the single
atomic layers made by exfoliation [11–16]. Aside from be-
ing widely used in heterostructures [17], h-BN is emerging
by itself as a versatile material offering novel optical and
electro-optical functionalities. The crystal layer structure that
constitues h-BN, mediated via interlayer van der Waals forces,
produces a uniaxial optical response of the material. This
implies that the dielectric function of h-BN needs to be
described by a diagonal tensor

↔
ε with two principal axes

[12,13]: εx = εy = ε⊥ and εz = ε‖. When Re(ε‖)Re(ε⊥) < 0,
phonon polaritons can propagate inside the material and ex-
hibit a hyperbolic dispersion [7,18], that is, the relationship
between the different components of the polariton wave vec-
tor k(ω) = (kx, ky, kz ) traces a surface in momentum space
which corresponds to hyperboloids. For h-BN, one can find
two energy bands (the reststrahlen bands) where one of the
principal components of the dielectric tensor is negative. Each

*aizpurua@ehu.eus

reststrahlen band is defined by the energy region between the
transverse and longitudinal optical phonon energy, TO and
LO, respectively (TO⊥ and LO⊥ for the upper reststrahlen
band and TO‖ and LO‖ for the lower Reststrahlen band,
see Fig. 1). On the other hand, when Re(ε‖)Re(ε⊥) > 0, the
isofrequency surfaces traced by the polariton wave vector in
momentum space are ellipsoids.

Figure 1 depicts ε⊥ and ε‖ (see Appendix A for expres-
sions and parameters of the dielectric tensor components),
which represent the in-plane and out-of-plane dielectric com-
ponents of h-BN, respectively. The energy range in Fig. 1,
shaded in red, corresponds to the lower reststrahlen band
(94.2–102.3 meV) where the real part of the out-of-plane
permittivity is negative, leading to isofrequency surfaces in
the form of two-sheet hyperboloids (inset type I). The energy
region shaded in gray corresponds to the upper reststrahlen
band (168.6–200.1 meV), where the real part of the in-plane
permittivity is negative and the isofrequency surfaces corre-
spond to one-sheet hyperboloids (inset type II).

Hyperbolic phonon polaritons excitable in h-BN within the
range of 90–200 meV might be a key to many novel photonic
technologies relying on the nanoscale confinement of light
and its manipulation. As a result, efficient design and uti-
lization of h-BN structures require spectroscopic studies with
adequate spatial resolution. This can be provided, for instance,
by electron energy-loss spectroscopy (EELS) using electrons
as localized electromagnetic probes. Recently, instrumental
improvements in EELS performed in a scanning transmis-
sion electron microscope (STEM) allowed to spatially map
phonon polaritons [19] and hyperbolic phonon polaritons in
h-BN [20,21]. The focused electron beam in STEM has thus
become a suitable probe to access the spectral information
of low-energy excitations in technologically relevant materi-
als, with nanoscale spatial resolution. Thus, EEL spectra in
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phononic materials can be of paramount importance to reveal
the properties of phonon polariton excitations.

In this work we first show that a fast electron traveling
through bulk h-BN can excite volume phonon polaritons in-
side and outside the h-BN reststrahlen bands. Our analysis
reveals that the excitation of the volume polariton modes is
strongly dependent on the electron velocity and also on the
orientation between the electron beam trajectory and the h-BN
optical axis. We then study the formation of wake patterns
in the field distribution induced by the electron beam at h-
BN. Our methodology allows us to connect the excitation
of these wake fields with the different electron energy-loss
mechanisms experienced by the fast electron in the medium:
(i) excitation of phonon polaritons or (ii) Cherenkov radiation.
We also discuss the emergence of asymmetric wake patterns
exhibited by the induced electromagnetic field when the elec-
tron beam trajectory sustains an angle relative to the h-BN
optical axis. Finally, in the last two sections of the paper we
show that a fast electron beam interacting with a semi-infinite
h-BN interface excites Dyakonov surface phonon polaritons
within the h-BN upper reststrahlen band. We further demon-
strate that the probing electron traveling above h-BN in aloof
trajectories excites volume phonon polaritons (remotely ac-
tivation). All these findings offer a way to steer and control
the propagation of the polaritonic waves and reveal the impor-
tance of the anisotropic optical response of the material in the
EELS analysis.

II. EXCITATION OF INFRARED BULK MODES IN H-BN
BY A FOCUSED FAST ELECTRON BEAM

A. Bulk modes in h-BN

According to Maxwell’s equations in momentum-
frequency (k, ω) space, the dispersion relation for a wave
propagating in the volume of an anisotropic material can be
found from the following relationship [22,23]:

det[
↔
G

−1

(k; ω)] = det
[
k ⊗ k − k2

↔
I + k2

0
↔
ε
] = 0, (1)

where
↔
G

−1

is the inverse of the Green’s tensor, k(ω) =
(kx, ky, kz ) is the wave vector of the wave, k0 = ω/c is the
magnitude of the wave vector in vacuum, c is the speed of
light, det[

↔
x ] stands for the determinant of a matrix, ⊗ is the

tensor product, and
↔
I is the identity tensor. Particularly, for

a uniaxial medium, the dielectric response can be described
in tensor form as

↔
ε (ω) = diag[ε⊥, ε⊥, ε‖]. For this case, two

solutions (modes) arise from Eq. (1), yielding the dispersion
relation for ordinary waves

k2 = k2
0ε⊥, (2)

and the dispersion relation for extraordinary waves

k2
x + k2

y

ε‖
+ k2

z

ε⊥
= k2

0 . (3)

Equation (2) represents concentric spheres in k space for a
given energy h̄ω (with ε⊥ > 0), while Eq. (3) represents hy-
perboloids or ellipsoids in the reciprocal space depending on
the sign of the dielectric components ε‖ and ε⊥. Altogether,

FIG. 1. Real parts of the components of the h-BN dielectric
function. The shaded red area marks the lower reststrahlen band and
the gray area the upper reststrahlen band. Insets illustrate the elliptic
and the hyperbolic (type I and type II) isofrequency surfaces and the
crystal lattice structure of h-BN.

the isofrequency surfaces of the polariton wave vector k(ω)
in momentum space (for a uniaxial medium) constitute the
dispersion relation of the phonon-polariton modes and, as
observed in Eqs. (2) and (3), are represented geometrically by
spheres, ellipsoids, or hyperboloids. Note that these modes are
independent of the exciting probe used. For h-BN, the insets in
Fig. 1 depict the isofrequency surfaces for each energy region
inside and outside the reststrahlen bands. As we will show in
the following, fast electron beams are effective probes capable
of exciting the different phonon-polariton modes sustained in
h-BN.

B. Electron energy-loss probability

Fast electron beams can couple to bulk polaritonic modes
sustained in anisotropic media. We can observe this by an-
alyzing the energy losses experienced by the electron when
traveling in such media. Electron energy losses, �EEELS, can
be calculated within classical electrodynamics as the work
performed by the induced electromagnetic field Eind (r; t ) on
the probing electron [24–28]

�EEELS = e
∫

dre · Eind (re; t ), (4)

where the integration is performed along the electron beam
trajectory re(t ), e is the elementary charge, and Eind(r; t ) is
evaluated along re(t ). Notice that we approximate the electron
beam as a classical point charge. The relatively low currents
used in typical EELS experiments justify this approximation
[29–31]. If we Fourier transform Eind(r; t ) �→ Eind(r; ω) in
Eq. (4), the electron energy losses can be written as

�EEELS = e

2π

∫
dre ·

∫ ∞

−∞
dω Eind(re; ω) e−iωt

=
∫ ∞

0
dω

∫
dL h̄ω �(ω), (5)

where one identifies the electron energy-loss (EEL) probabil-
ity per unit path �(ω) as

�(ω) = e

π h̄ω
Re[Eind(re; ω) · v̂ e−iωte ], (6)
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FIG. 2. Schematics of the electron traveling through the h-BN
with velocity v = vẑ parallel to the h-BN optical axis (z direction).

with v̂ the unit vector in the same direction as the electron
velocity v and te is the time for the electron to travel a distance
dL. Hence, to calculate �(ω) one needs to know the induced
electric field Eind(r; ω). We derive below the expressions of
the total electric field Etot(r; ω) and �(ω) for an electron beam
trajectory parallel to the optical axis of h-BN, as depicted in
Fig. 2.

It follows from Maxwell’s equations that the field produced
by the fast electron plus the induced electric field, namely, the
total electric field [Etot(r; ω)] is given by

Etot(r; ω) = −i
ω

(2π )3c2ε0

∫
d3k ρ(k; ω)

↔
G(k; ω) · v eik·r,

(7)
with ε0 the vacuum permittivity and ρ(k; ω) = −2π eδ(ω −
k · v) the charge density of the probing electron. The integra-
tion in Eq. (7) extends over the whole reciprocal space and
the delta function introduced by the charge density ensures
conservation of energy and momentum. Indeed, one finds
that in the no-relativistic limit the energy that the electron
with initial velocity v transfers to the medium upon losing
momentum h̄k is

h̄ω = (p + h̄k)2

2m
− p2

2m
= h̄v · k + h̄2

2m
k2, (8)

with p = mv the initial momentum of the fast electron. By
neglecting recoil of the incident electron, from Eq. (8) one
arrives to the so-called nonrecoil approximation where ω =
k · v. Note that the z component of the wave vector is fixed by
kz = ω/v when the electron travels in the z direction.

To calculate the bulk loss probability �bulk(ω) experienced
by the fast electron in the anisotropic medium we substitute
Eq. (7) into Eq. (6). Notice that a fast electron traveling in
vacuum loses no energy, thus we can use Etot(r; ω) instead of
Eind(r; ω) in Eq. (6). Using the cylindrical symmetry of the
field produced by the fast electron one finds that

�bulk(ω) =
∫ kc

⊥

0
dk⊥ Pbulk(k⊥; ω), (9)

where

Pbulk(k⊥; ω) = − 2e2k⊥v

(2π )3h̄c2ε0vz

∫ 2π

0
dφ Im[v̂ ·

↔
Gkz · v̂] (10)

is the probability for the electron to transfer a transverse
momentum h̄k⊥ (to the electron trajectory) upon losing energy
h̄ω. We will refer to this quantity as the momentum-resolved

loss probability. In Eq. (10)
↔
Gkz =

↔
G(k⊥, φ, kz = ω/vz −

k⊥ · v/vz ), and φ is the angle between k⊥ and the kx axis, with

h̄kc
⊥ the maximum perpendicular momentum of the electrons

selected by the collection aperture of the EELS spectrometer.
Particularly, when the electron beam trajectory points out

in the same direction as the h-BN optical axis (v = vẑ), ex-
pressions for Etot(r; ω) and thus for �bulk(ω) can be found in
a closed form (see Appendix B for the analytical formula of
the Green’s tensor in uniaxial anisotropic media):

Etot(r; ω) = e

2πε0

ω

v2γ⊥ε⊥
g(r; ω), (11)

where

g(r; ω) = eiωz/v

[
i

γ⊥
K0

(√
ε‖
ε⊥

|ω|
γ⊥v

R

)
ẑ

− sgn(ω)
√

ε‖ε⊥K1

(√
ε‖
ε⊥

|ω|
γ⊥v

R

)
R̂

]
(12)

is written in cylindrical coordinates r = (R, z) = (x, y, z),
R =

√
x2 + y2, K0(x), K1(x) are the zero- and first-order mod-

ified Bessel functions of the second kind, sgn stands for the
sign function, and γ⊥ = 1/

√
1 − v2ε⊥/c2 is the Lorentz fac-

tor.
The momentum-resolved loss probability becomes

Pbulk(k⊥; ω) = − 2e2

(2π )2ω2h̄ε0
Im

{[
k2

0ε⊥ − ω2

v2

]

× k⊥
ε‖

[
ε⊥k2

0 − ω2/v2
] − ε⊥k2

⊥

}
, (13)

and, substituting Eq. (13) into Eq. (9), one finds that

�bulk(ω) = e2

(2π )2ω2h̄ε0
Im

{[
k2

0 − ω2

ε⊥v2

]

× ln

[
ε‖ε⊥k2

0 − ε‖ω2/v2 − ε⊥
(
kc
⊥
)2

ε‖ε⊥k2
0 − ε‖ω2/v2

]}
. (14)

The nonretarded versions of Pbulk(k⊥; ω) and �bulk(ω) can be
obtained by setting k0 equal to zero in Eqs. (13) and (14).

The spectrum of the momentum-resolved loss probability
and the EEL probability provide valuable information which
reveals the properties of the modes of the anisotropic material.
We thus explore in the following the connection between
the dispersion relation of the h-BN excitations in the upper
reststrahlen band with these two quantities.

C. Upper reststrahlen band

In the following we address the electron energy losses in
h-BN and the connection of these losses with the isofrequency
surfaces of the material. We first show in Fig. 3(a) the isofre-
quency curve of a h-BN phonon polariton for an energy in the
upper reststrahlen band (red curve). We chose 195 meV as a
representative value of this band. When a fast electron beam is
used to probe these excitations in the medium, the velocity of
the electron determines the momentum transfer, as k · v = ω

[Eq. (8) in the nonrecoil approximation]. If the electron is
traveling along the z direction, then kz = ω/v [blue horizontal
line in Fig. 3(a)]. Following Eq. (3), this also sets the value of
the h̄k⊥ momentum component (k2

⊥ = ε‖k2
0 − ε‖k2

z /ε⊥) of the
excited phonon polariton.
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FIG. 3. (a) Isofrequency curves for energies inside (195 meV, red solid line) and outside (160 and 205 meV, green and black dashed

lines) the upper reststrahlen band plotted for the wave vector kz versus k⊥ =
√

k2
x + k2

y . The horizontal blue line represents the momentum

h̄kz = h̄ω/(0.1c) transferred by the fast electron to the polaritons when it travels along the z direction with v = 0.1c. The blue line is evaluated
at energy 195 meV (caption at the top right of the figure). The black arrows represent the polariton wave vector k(ω), θk is the angle between
k(ω) and the kz axis, the magenta arrows represent the group velocity vg, and the orange arrows the Poynting vector S. (d) Shows a zoom into
(a). In (d) the horizontal blue line represents kz = ω/(0.5c). The contour plot (left panel) in (b) shows the momentum-resolved loss probability
Pbulk(k⊥; ω) normalized to the maximum value (3 a.u.) for v = 0.1c. The right panel in (b) shows the energy-loss probability �bulk(ω) obtained

by integrating Pbulk(k⊥; ω) over k⊥ up to kc
⊥ = 0.05 Å

−1
. (e) Same as in (b) but considering v = 0.5c. (c), (f) Depict the real part of the z

component of the total electric field induced by the fast electron along the cylindrical coordinates (R, z) for the energy 195 meV. The field plots
are normalized to the maximum value in each case: (c) 1 × 10−5 a.u. and (f) 7.5 × 10−7 a.u. The insets in (c) and (f) illustrate the electron
beam trajectory and orientation of the h-BN crystal planes.

The intersections between kz = ω/v and the isofrequency
curves in the upper reststrahlen band establish a relationship
between the energy h̄ω of the hyperbolic phonon polariton and
its perpendicular momentum component h̄k⊥. In the left panel
of Fig. 3(b) we plot this relationship (blue dashed line) and the
momentum-resolved loss probability Pbulk(k⊥; ω) (light blue-
yellow contour plot) for v = 0.1c. We note that the highest
values of Pbulk(k⊥; ω) coincide with the blue dashed line and
its asymptotic behavior approaches LO⊥ for large k⊥. This
demonstrates that electron energy losses in the upper band
are due to phonon polariton excitations. We confirm this by
integrating Pbulk(k⊥; ω) over k⊥ up to a cutoff momentum

h̄kc
⊥, which yields the EEL probability �bulk(ω) [right panel

of Fig. 3(b)]. A clear peak can be observed at the longitudinal
optical phonon. This energy-loss peak is slightly asymmetric
with a broader tail inside the reststrahlen band compared to
that outside the band. Importantly, at energies above LO⊥ no
losses are found. This can be understood with the help of
the isofrequency curves in Fig. 3(a). For instance, at energy
205 meV (black dashed line, above the upper reststrahlen
band) the ellipse does not intersect the blue horizontal line
and therefore there is no excitation above the upper band. For
energies below TO⊥, the ellipses may intersect or not the blue
horizontal line of kz depending on the particular energy. For
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instance, at an energy of 160 meV [green dashed line, below
the upper reststrahlen band in Fig. 3(a)] the ellipse does not
cut kz = ω/(0.1c) and therefore there is no excitation induced
in that case. However, for other energies the isofrequency
surfaces can cut the kz line, and therefore an anisotropic di-
electric mode can be excited [tail below 170 meV in Fig. 3(b)].
We learn from this analysis that the excitation of the phonon
polariton modes close to the upper reststrahlen band is highly
dependent on the topology (hyperbolic or elliptic) of the
isofrequency surfaces.

The dependency of phonon polaritons excitation on the
isofrequency surface allows to control the polaritonic modes
as we discuss now in Fig. 3(c), where we show the real
part of the z component of the total electric field at h̄ω =
195 meV (representing the energy within the hyperbolic dis-
persion regime in the upper reststrahlen band), induced by a
fast electron with velocity v = 0.1c. A schematic represen-
tation of such electron beam trajectory is displayed in the
inset of Fig. 3(c). We observe two important features: the
formation of a wake pattern and an oscillatory behavior of the
field in the z direction. This spatial periodicity is connected
with the parallel momentum component (h̄kz = h̄ω/v) trans-
ferred by the electron since the observed wavelength along
the z axis is λz = 2π/kz. This implies that the wavelength
λz decreases with increasing energy of the phonon polariton.
Furthermore, the direction of the wake pattern is governed
by the polariton phase velocity [vp parallel to k(ω), black
arrow]. The outward direction (relative to the electron beam
trajectory) of the wavefronts is determined by the sign of the
radial component of vp relative to the radial component of the
energy flow (given by the Pointing vector S = E × H parallel
to the group velocity vg = ∇kω [32–36], magenta arrow). We
recognize in Fig. 3(a) that the group and the phase velocities
are nearly perpendicular, and their projection onto the radial
axis are parallel, leading to a wave propagating away from the
electron beam trajectory (positive phase and positive group
velocity with respect to the energy propagation direction). It
is worth noting that the projection of the group and the phase
velocities onto the beam trajectory direction (z direction) leads
to negative phase and positive group velocities relative to Sz

[Fig. 3(a)].
As pointed out, for each energy h̄ω, the velocity of the

fast electron determines (primarily) the polariton wave vec-
tor parallel to the beam trajectory kz and, consequently, the
perpendicular wave vector k⊥ [according to Eq. (3)]. To
emphasize the velocity dependency, we perform the same
analysis [Figs. 3(d)–3(f)] as in Figs. 3(a)–3(c) but increasing
the electron velocity to v = 0.5c. In Fig. 3(d) a zoom into the
isofrequency curve of Fig. 3(a) is presented, together with the
value kz (horizontal blue line) determined by the electron ve-
locity v = 0.5c. The increase of the electron velocity leads to
the excitation of 195-meV polaritons with reduced momentum
(determined by the intersection of the blue horizontal line and
the red isofrequency curve). By calculating the momentum-
resolved loss probability Pbulk(k⊥; ω) [left panel of Fig. 3(e)]
and the EEL probability �bulk(ω) [right panel of Fig 3(e)] we
find the same behavior as in Fig. 3(b) for v = 0.1c, except
for a one order of magnitude reduction in both k⊥ and the
magnitude of the loss probability.

The differences in the properties of the phonon polaritons
launched by the fast electron at both electron velocities are
distinguishable in Fig. 3(f), where we show the real part of
the z component of the total electric field induced by the fast
electron with v = 0.5c at energy 195 meV. The spatial period
λz of the polariton is longer compared to that in Fig. 3(c) as
a result of the increase in the electron velocity (smaller h̄kz

transferred). The direction of the wake field is quite similar
to that of Fig. 3(c). This behavior is a specific feature of
hyperbolic polaritons since the intersection of the blue line
both for v = 0.1c and v = 0.5c occurs at the asymptote of
the hyperbola which results in polariton wave vectors that
have very similar propagation direction but different absolute
values.

D. Lower reststrahlen band

In Fig. 4(a) we show the isofrequency curve of h-BN
phonon polaritons for an energy in the lower reststrahlen band
(red line). Note that the hyperbolas are rotated by 90◦ as
compared to the upper reststrahlen band [see Figs. 3(a) and
3(d)]. However, the momentum h̄kz transferred by the fast
electron to the phonon polaritons is still given by the crossing
of the hyperbolas with the horizontal blue line [representing
kz = ω/v for v = 0.1c in Fig. 4(a)]. From Eq. (3) we obtain
the polariton perpendicular momentum h̄k⊥, which is shown
in Fig. 4(b) as a function of energy h̄ω (dashed blue curve). We
also plot the momentum-resolved loss probability Pbulk(k⊥; ω)
for energies within the lower reststrahlen band. Notice that the
highest values of Pbulk(k⊥; ω) (red and yellow colors in the
contour plot) coincide perfectly with the blue dashed curve,
demonstrating that the electron energy losses in the lower
band are also governed by polariton excitations. However,
in contrast to the upper band, we find that the dashed blue
curve has a negative slope, dω/dk⊥ < 0, indicating that the
group and the phase velocities are antiparallel (have opposite
sign) along the radial direction. We will show below with
Fig. 4(c) that the phase velocity in the radial direction is
indeed antiparallel (negative) relative to the Poynting vector
(energy flow) while the group velocity in the radial direction
is parallel (positive), which is a consequence of the phase and
group velocity vectors being perpendicular to each other and
rotated by 90◦ compared to the upper reststrahlen band.

To obtain spectroscopic information on the excitations in
the lower reststrahlen band, we calculate the EEL probability
�bulk(ω) by integration of Pbulk(k⊥; ω) in momentum space
[right panel in Fig. 4(b)]. Contrary to the upper reststrahlen
band, we observe a uniform and relatively small loss prob-
ability between TO‖ and LO‖ without the appearance of a
sharp peak around LO‖. We explain this finding by (i) the
large cutoff momenta (h̄kc

⊥) imposed by the aperture of the
microscope detector and (ii) the relationship between the en-
ergy and the transverse momentum of the polaritons in the
lower band [see Fig. 4(b), left panel]. Indeed, we observe
in Fig. 4(b) that the asymptotic behavior of the blue dashed
line tends to TO‖ for large k⊥. This shows that low-energy
hyperbolic phonon polaritons, close to TO‖, largely contribute
to the energy losses for large kc

⊥ values. Contrary to the upper
band, where the high-momenta contribution to the electron
energy losses comes from polaritons with high energy, close to
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FIG. 4. (a) Isofrequency curves for energies inside (100 meV, red solid line) and outside (92.5 and 105 meV, green and black dashed

lines) the lower reststrahlen band plotted for the wave vector kz against k⊥ =
√

k2
x + k2

y . The horizontal blue line represents the momentum

h̄kz = h̄ω/(0.1c) transferred by the fast electron to the polaritons when it travels along the z direction with velocity 0.1c. The blue line is
evaluated at energy 100 meV. The black arrows represent the polariton wave vector k(ω), θk is the angle between k(ω) and the kz axis, the
magenta arrows represent the group velocity vg, and the orange arrows the Poynting vector S. (d) Shows a zoom into (a). In (d) the horizontal
blue line represents kz = ω/(0.5c) evaluated at energy 92.5 meV. The contour plot (left panel) in (b) shows the momentum-resolved loss
probability Pbulk(k⊥; ω) normalized to the maximum value (3 a.u) for v = 0.1c. The right panel in (b) shows the energy-loss probability

�bulk(ω) obtained by integrating Pbulk(k⊥; ω) over k⊥ up to kc
⊥ = 0.05 Å

−1
. (e) Same as in (b) but considering v = 0.5c. For this case the

maximum of Pbulk(k⊥; ω) is 2.5 a.u. (c), (f) Depict the real part of the z component of the total electric field induced by the fast electron along
the cylindrical coordinates (R, z) for the energies: (c) 100 meV (for v = 0.1c) and (f) 92.5, 100, and 105 meV (for v = 0.5c). The field plots
are normalized to the maximum value in each case: (c) 1 × 10−6 a.u. and (f) 7.5 × 10−8 a.u.. The insets in (c) and (f) illustrate the electron
beam trajectory.

LO⊥ [Fig. 3(b), left panel]. We address the reader to Appendix
C where we show �bulk(ω) in the lower reststrahlen band for
different kc

⊥ cutoff values.
The excitation of phonon polaritons (within the lower rest-

strahlen band) by the probing electron can be observed in
Fig. 4(c), where we show the real part of the z component
of the total electric field induced at energy h̄ω = 100 meV.
Analogously to the upper band, the oscillatory behavior of
the field distribution along the z direction is governed by
the transferred momentum h̄kz. Interestingly, the wake pat-
tern is reversed compared to that for the upper reststrahlen

band [Figs. 3(c) and 3(f)], i.e., the wavefronts are propagating
toward the electron beam [33,37,38]. By plotting the group
and phase velocity vectors onto the field plots [magenta and
black arrows, respectively; also plotted in Fig. 4(a)], we can
clearly recognize that the projections of both vectors onto the
radial axis (perpendicular to the electron beam trajectory) are
antiparallel. This leads to a negative phase and positive group
velocity relative to the Poynting vector direction (which points
always away from the electron beam to preserve causality)
along the radial axis. The negative phase velocity in the radial
direction is a direct result of the phase velocity vector being
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nearly perpendicular to the Poynting vector, both being rotated
by 90◦ as compared to the upper reststrahlen band [where
both phase and group velocities are positive relative to energy
propagation in the radial direction, see Figs. 3(c) and 3(f)].

When the velocity of the electron is increased up to 50%
the speed of light, the kz component of the wave vector
parallel to the beam trajectory is reduced. In this case, the
matching between the red hyperbola and the horizontal blue
line is prevented as observed in Fig. 4(d). This mismatch
of energy and momentum forbids the excitation of hyper-
bolic phonon polaritons. However, the blue line intersects
the elliptical isofrequency surface of anisotropic bulk phonon
polaritons (dielectric) above and below the lower reststrahlen
band (black and green dashed curves calculated for 105 and
92.5 meV, respectively). The matching of energy and mo-
mentum at the intersections of the elliptical isofrequency
surfaces leads to the excitation of the dielectric modes, as
demonstrated by calculating the momentum-resolved loss
probability Pbulk(k⊥; ω) [left panel of Fig. 4(e)]. This loss
probability is determined by the relationship between the
energy of the elliptical polaritons and the perpendicular mo-
mentum component [dashed blue lines, showing ω(k⊥) of
the elliptical polaritons]. The integration of Pbulk(k⊥; ω) in
the reciprocal space subsequently yields small energy-loss
probabilities outside the reststrahlen band, whereas inside the
reststrahlen band the loss probability is negligible due to ab-
sence of polariton excitations.

In Fig. 4(f) we show the total electric field induced by
the electron beam for energies inside (marked 2) and outside
(marked 1 and 3) the lower reststrahlen band. We can ob-
serve the formation of wake patterns only for those energies
where the dielectric modes are excited (marked as 1 and
3). Importantly, the wake wavefronts propagate outward the
beam trajectory as a consequence of the group (vg) and phase
velocities (vp) being parallel (positive) relative to the Poynting
vector in the radial direction [Fig. 4(d)]. We can also notice
that the projection of these velocity vectors onto the z direction
is positive. This demonstrates that the radial and z projections
of vp and vg for elliptical polaritons are positive, contrary to
the hyperbolic regime (reststrahlen bands) where one of the
components is negative [Figs. 3(c), 3(f), and 4(c)].

E. Induced wake patterns and Cherenkov radiation

We have shown in Secs. II C [Figs. 3(c) and 3(f)] and II
D [Figs. 4(c) and 4(f)] that the field distributions produced by
a fast electron traveling through h-BN can exhibit wake pat-
terns. The excitation of these patterns (for energies inside and
outside the reststrahlen bands) is connected to the different
mechanisms of energy losses experienced by the fast electron
in the h-BN. In the following we discuss this connection.

First, it is worth noting that the excitation of the wake
fields inside the reststrahlen bands occurs for energies where
electron losses appear [compare Fig. 4(c) with the image in
Fig. 4(f) labeled as 2]. As we pointed out, the electron energy
losses within the reststrahlen bands correspond to the exci-
tation of hyperbolic phonon polaritons. This implies that the
wake fields are associated to the excitation of coherent-charge
density fluctuations [38–43] in the h-BN, namely, the phonon
polaritons.

In contrast to the wake fields inside the reststrahlen bands,
the emergence of the wake patterns outside the bands (see
Fig. 4, images labeled as 1 and 3) occurs due to a different
physical process to that of the excitation of hyperbolic phonon
polaritons. Outside the reststrahlen bands the h-BN dielec-
tric function is purely dielectric and thus the electron energy
losses correspond to the radiation emitted by the electron
when it passes through the medium with velocity larger than
the speed of light (in the h-BN). This mechanism is known as
Vavilov-Cherenkov radiation [44–51]. We have confirmed that
the losses in this energy range are present even in the absence
of damping in the material (not shown), confirming that the
losses are due to Cherenkov radiation in this case. This only
happens for electron velocities which fulfill

v >
c√
ε⊥

, (15)

being consistent with the condition for excitation of
Cherenkov radiation [52,53].

Finally, one can also note that the excitation of the wake
fields in the lower reststrahlen band depends on the electron
velocity [compare Figs. 4(c) and 4(f) label 2]. Indeed, for en-
ergies in the lower band one can deduce from Eqs. (11)–(12)
that the wake patterns appear under the following condition:

ε‖
ε⊥

<
v2

c2
ε‖ or equivalently v <

c√
ε⊥

, (16)

where only the real part of the dielectric function is consid-
ered. Interestingly, one can observe that the velocity of the
fast electron fulfills different conditions for the appearance of
wake patterns in different energy ranges [compare Eqs. (15)
and (16)]. This difference is a direct consequence of the dis-
tinct physical processes in the excitation of the wake fields.

The different nature of the excitation of the wake fields
outside and inside the reststrahlen bands is also reflected in
the angle θw = 90◦ − θk that the wake patterns sustain with
respect to the electron beam trajectory. An analysis of this
angle and its relationship with Eqs. (15) and (16) is developed
at the end of Appendix D.

F. Asymmetric wake patterns induced by tilting the electron
beam trajectory

As we pointed out in the last sections, the excitation of
hyperbolic phonon polaritons can be controlled by the ve-
locity of the fast electrons. In the following, we study how
steering of phonon polaritons can be controlled via the angle
α between the electron beam trajectory and the h-BN optical
axis.

When the electron travels at an angle α relative to the
h-BN optical axis (illustrated in Fig. 5), the condition for
the conservation of energy and momentum given by Eq. (8)
in the nonrecoil approximation (k · v = kyvy + kzvz = ω) is
represented by an inclined plane in momentum space [blue
planes in Figs. 6(a) and 6(d)]. The magnitude of the momen-
tum transferred by the electron to the phonon polaritons (along
the beam trajectory given by v̂) is still given by h̄kv̂ = h̄ω/v.
The polariton wave vector can be obtained from the intersec-
tion between the blue plane k · v = ω and the isofrequency
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FIG. 5. Schematics of the electron traveling through the h-BN
with velocity v = v(0, sin α, cos α) at an angle α with respect to the
optical (z) axis of h-BN.

surfaces [red hyperboloids in Figs. 6(a) and 6(d)]. Interest-
ingly, we observe that the intersections are not cylindrically
symmetric with respect to the kz axis [Figs. 6(a) and 6(d)].
This implies that the polaritonic wave will propagate asym-
metrically with respect to the electron beam trajectory. Indeed,
depending on the direction of propagation, the intersection
between the blue planes and the red hyperboloids in Figs. 6(a)
and 6(d) will occur at wave vectors k(1) and k(2) whose z
component can be the same (symmetrical case) or different
(asymmetrical case). To better understand the different asym-
metries in the propagation of the polaritonic wave we refer
the reader to Appendix D, where we show the intersection
of the blue plane and the red hyperboloids [Figs. 6(a) and
6(d)] for selected directions of the wave vector. Notice that
the symmetric case is similar to the one we discussed in Secs.
II C and II D. Therefore, we will focus here on the analysis
of the polariton propagation direction which shows the largest
asymmetry, that is, the kykz plane.

We show in Fig. 6(a) the plane k · v = ω for v = 0.1c
(blue surface) and the isofrequency hyperboloid (red surface)
for a representative energy in the upper reststrahlen band
(h̄ω = 180 meV). In Fig. 6(b), we plot the projection of the
intersection between the blue plane and the red hyperboloid
in the kykz plane. The blue dashed line represents the electron
beam trajectory and the black dashed line the kz axis. One
can notice that the matching between the blue solid line and
the red hyperbola [Fig. 6(b)] occurs at wave vectors k(1) and
k(2) whose z component is different. Thus, the projections
onto the z axis of the phase velocities v(1)

p and v(2)
p (parallel

to k(1) and k(2), black arrows) are also different. Due to the
hyperbolic shape of the isofrequency curve the z component
of the group velocities v(1)

g [parallel to the Poynting vector
S(1), right orange arrow in Fig. 6(b)] and v(2)

g [parallel to the
Poynting vector S(2), left orange arrow in Fig. 6(b)] are also
asymmetric. This difference (asymmetry) in the components
of the two phase and group velocities leads to a highly asym-
metric propagation of the polaritonic wave with respect to the
electron beam trajectory.

The dependency of the polaritonic waves on the angle α

can be observed in Fig. 6(c), where we plot the real part of
the z component of the total electric field produced by the
fast electron at energy h̄ω = 180 meV and v = 0.1c when
α = 20◦ and 45◦. Similar to the parallel trajectory (Secs. II C
and II D), one can notice the formation of wake patterns and

the spatial periodicity of the field along the electron beam
trajectory. This periodicity is determined by the momentum
transferred along the beam trajectory (h̄kv̂ = h̄ω/v) since the
corresponding wavelength is λv̂ = 2π/kv̂. Thus, the higher
the energy of the polariton is, the smaller λv̂ will be. The
wake patterns formed by the field distribution are clearly
asymmetric with respect to the beam trajectory. We observe
[Fig. 6(c)] that the wake fields exhibit largest asymmetry as α

is increased from 20◦ [Fig. 6(c), left panel] to 45◦ [Fig. 6(c),
right panel]. This is a direct consequence on how the electron
transfers different momentum components h̄ky and h̄kz to the
polaritonic excitation [see Fig. 6(b)]. One can notice from
Fig. 6(b) that as α is increased, k(1)

z ≈ 0 and k(2) tends to the
asymptote of the red hyperbola. Therefore, for large angles
α the polaritonic wave will propagate relative to the beam
trajectory with a phase velocity close to zero on one side of
the beam trajectory and with a non-zero phase velocity on
the other side of the beam trajectory. These findings explain
the tilting of the wavefronts in Fig. 6(c) for α = 45◦ at the
left side of the electron beam. It is worth noting that Fig. 6(c)
corresponds to the propagation of the polaritonic wave in the
yz plane. However, for other propagation directions, the field
distributions will be different.

In Figs. 6(d)–6(f) we show the same analysis (electron
beam trajectory tilted an angle α with respect to the h-BN
optical axis) for a representative energy within the lower
reststrahlen band (100 meV). Importantly, for this case the
projections onto the y axis of the phase velocities v(1)

p and v(2)
p

are antiparallel (negative) to the y component of the Poynting
vectors S(1) and S(2). This yields an asymmetric wave propa-
gating with negative phase velocity [Fig. 6(f)].

Additionally, the electron velocity v allows to control the
momentum transfer by the fast electron to the phonon polari-
tons [Eq. (8)]. Indeed, one can obtain the relationship between
v and the excitation of the asymmetric wake patterns by an-
alyzing the wake angles θ (1)

w = 90◦ − θ
(1)
k and θ (2)

w = 90◦ −
θ

(2)
k [Figs. 6(c) and 6(f)]. We refer the reader to Appendix

D where we derived this relationship. For completeness, we
show in Appendix E the electron energy losses experienced
by a fast electron traveling through h-BN in tilted trajectories
with respect to the h-BN optical axis.

We have found that the excitation of the polaritonic wave
is highly dependent on the orientation of the electron beam
trajectory with respect to the h-BN crystallographic arrange-
ment. Thus, while the speed of the electron serves as a means
to excite the polaritonic wave or not, the orientation of the
electron beam trajectory can serve to control the direction of
the polaritonic excitation.

III. EXCITATION OF DYAKONOV SURFACE PHONON
POLARITONS IN H-BN BY A LOCALIZED BEAM OF FAST

ELECTRONS

We next study the EELS signal when the electron beam is
traveling above an h-BN semi-infinite surface. The interface
between vacuum and h-BN lies on the yz plane, as depicted
in Fig. 7, with the y axis in the direction of ε⊥ and the z
axis in the direction of the h-BN optical axis. The electron
travels in vacuum at a distance x0 from the surface (we will
refer to this distance as the impact parameter) with velocity
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FIG. 6. Isofrequency surfaces for (a) the upper and (d) the lower reststrahlen bands for representative energies in each band: (a) 180 meV
and (d) 100 meV. The blue inclined plane represents the condition for the conservation of energy and momentum in the nonrecoil approxi-
mation: k · v = ω for an electron with v = 0.1c and α = 20◦. Panels (b) and (e) next to each hyperboloid depict the intersection between the
blue plane and the hyperboloids in the kykz plane. In these projections, the black arrows represent the two wave-vector solutions k(1), k(2) with
angles θ

(1)
k , θ (2)

k with respect to the beam trajectory (blue dashed line), the magenta arrows represent the group velocities v(1)
g , v(2)

g and the orange
arrows the Poynting vectors S(1), S(2). The contour plots in (c) and (f) show the normalized real part of the z component of the total electric
field in the yz plane for the energies: (c) 180 meV and (f) 100 meV. We plot the field distributions for two different angles of the electron beam
trajectory: 20◦ (left panels) and 45◦ (right panels). The maximum values of the field plots are (c) 4 × 10−6 a.u. and (f) >1.5 × 10−6 a.u.

v parallel to the optical axis of the h-BN. A schematic rep-
resentation of the probing electron-surface system is shown
in Fig. 7.

Surfaces of uniaxial materials with optical axis parallel
to the surface support a specific kind of surface waves, the
so-called Dyakonov waves [54,55]. When either ε⊥ or ε‖ is
negative (as in the case of the reststrahlen bands in h-BN),
Dyankonov surface polaritons [56] can propagate along the
surface. Recently, Dyakonov surface phonon polaritons have
been observed by scattering-type scanning near-field optical
microscopy (s-SNOM) at the edges of h-BN flakes [14,57]
as well as by STEM-EELS [20,58]. In the latter experiments,
the probing electrons were passing outside the flake edge in
a perpendicular trajectory. However, the excitation and detec-
tion of Dyakonov surface phonon polaritons with an electron
beam parallel to an extended surface has not been described
yet.

In the following, we first describe the Dyakonov surface
phonon polariton modes that exist at the interface between h-
BN and vacuum. We then show that a localized beam of fast
electrons can couple to these polaritons and we analyze the
corresponding EEL spectra and their polariton wake patterns.
Importantly, we find that surface Dyakonov phonon polaritons
are excited only in the upper reststrahlen band. Therefore, our
analysis and calculations are restricted to this energy range.

A. Surfaces modes in h-BN

According to Dyakonov’s theory [54], the interface de-
scribed in Fig. 7 supports electromagnetic waves that propa-
gate along it and their associated electromagnetic fields decay
exponentially perpendicular to the interface [54,55,59,60].
These surface waves can be expressed as a linear superpo-
sition of the four following modes propagating along the
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FIG. 7. Schematics of the probing electron traveling with veloc-
ity v at a distance x0 parallel to a h-BN surface. The optical axis of
the h-BN crystal lattice is parallel to the h-BN surface. Label I refers
to vacuum, while label II refers to h-BN.

interface: (i) a transverse electric (TE) mode, (ii) a transverse
magnetic (TM) mode (the corresponding fields decay into the
vacuum, upper half space in Fig. 7 labeled I), (iii) an ordinary
mode, and (iv) an extraordinary mode (the corresponding
fields decay exponentially into h-BN, lower half space in
Fig. 7 labeled II). Following this scheme the electric field in
each media can be written as

EI(x > 0, y, z) = (ATE + ATM)e−κIxei(kyy+kzz), (17a)

EII(x < 0, y, z) = (Aoeκo
IIx + Aeeκe

IIx )ei(kyy+kzz), (17b)

where harmonic dependency in time has been assumed, and
ATE, ATM, Ao, Ae are the amplitudes of each aforementioned
mode. The wave vector of each mode is given by

kd = (iκI, ky, kz ) TE, TM, (18a)

ko = ( − iκo
II, ky, kz

)
ordinary, (18b)

ke = ( − iκe
II, ky, kz

)
extraordinary, (18c)

where κI, κ
o
II, κ

e
II > 0 and ky, kz ∈ C need to fulfill the follow-

ing conditions:

κ2
I = k2

y + k2
z − (ω/c)2 vacuum, (19a)(

κo
II

)2 = k2
y + k2

z − ε⊥(ω/c)2 ordinary, (19b)(
κe

II

)2 = k2
y + ε‖

ε⊥
k2

z − ε‖(ω/c)2 extraordinary. (19c)

Applying boundary conditions imposed by Maxwell’s equa-
tions at the interface between vacuum and h-BN, one obtains
the following relationship [54,60,61]:(
κI + κe

II

)(
κI + κo

II

)(
κI + ε⊥κe

II

) = (ω/c)2(ε‖ − 1)(1 − ε⊥)κI,

(20)
which together with the set of Eqs. (19a)–(19c) determines the
in-plane wave vector (ky, kz ) of the Dyakonov waves.

It is worth noting that Dyakonov’s original work [54] was
derived for positive ε⊥ and ε‖. However, Eq. (20) is still valid
when ε⊥ < 0 and ε‖ > 0 [59,61]. Since negative values in the
real part of the dielectric components support the excitation of
polaritonic states, Dyakonov surface waves sustained in h-BN
in the mid-infrared region are thus called Dyakonov surface
phonon polaritons.

In Fig. 8 we plot the isofrequency contour (red curve) of
the h-BN surface polariton for an energy within the upper

FIG. 8. The red solid hyperbola represents the isofrequency
curve obtained with Eqs. (19a)–(19c) and (20) for the surface phonon
polariton, while the black dashed hyperbola represents the isofre-
quency curve obtained using Eq. (3) (setting kx = 0) for the bulk
phonon polariton. Both curves are calculated for a representative
energy in the upper reststrahlen band, 193 meV.

reststrahlen band (193 meV), obtained from Eqs. (19a)–(19c)
and (20). For comparison, we show a cut (kykz plane) of
the isofrequency surface of the hyperbolic volume polariton
[black dashed line obtained from Eq. (3)]. We find that the
isofrequency curve of the surface polariton is a hyperbola,
similar to that of the volume polariton particularly for small
momenta. At large momenta, on the other hand, the opening
angle of the isofrequency contour of the surface polariton θs

is smaller than that of the volume polariton θv, demonstrating
that the dispersion of Dyakonov phonon polaritons is different
to the one obtained for the bulk hyperbolic phonon polaritons.

B. Electron energy-loss probability

The excitation of Dyakonov surface phonon polaritons by
fast electron beams can be revealed by the electron energy-
loss spectra. In the following we describe the strategy to
obtain the momentum-resolved loss probability Psurf(ky; ω)
and the EEL probability �surf(ω), when the probing electron
travels above the h-BN surface (see Fig. 7).

To calculate �surf(ω), following Eq. (6), one needs to ob-
tain the induced electric field Eind(re; ω) along the electron
beam trajectory. To that end we obtain Eind(r; ω) by solv-
ing Maxwell’s equations in the presence of vacuum–h-BN
interface, assuming that the electron travels in vacuum with
constant velocity v and impact parameter x0 (Fig. 7). Consid-
ering the boundary conditions at the interfaces (x = 0), one
finds the induced electric field in vacuum (region I in Fig. 7):

Eind
I (x, ky, kz; ω) = (bI, dI, gI ) ρ̃ e−κIx, (21)

with bI, dI, gI being the coefficients involving the dielectric
functions at both sides of the interface and ρ̃ = −2πeδ(ω −
kzv)e−κIx0/ε0. We refer to Appendices F and G for a detailed
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FIG. 9. The left panel in (a) displays the momentum-resolved loss probability Psurf(ky; ω) normalized to the maximum value (3 a.u.) in
the vicinity of the upper reststrahlen band for x0 = 10 nm and v = 0.1c. The right panel in (a) shows the EEL probability �surf(ω) obtained

by integrating Psurf(ky; ω) over ky up to kc
y = 0.09 Å

−1
. (c) Same as in (a) but considering v = 0.5c. For this case the maximum value of the

momentum-resolved loss probability is 1 a.u. The color maps in (b) and (d) show the real part of the z component of the induced electric field
for the energies: 193 (marked 1, 3) and 198 meV (marked 2, 4). The top panels in (b) and (d) correspond to the in-plane views (yz plane) of
the induced field, while the bottom panels correspond to the out-of-plane views (xz plane). The field plots are normalized with respect to the
maximum value in each case. For the top panels the maximum values are (b.1) 1 × 10−4 a.u., (b.2) 7.5 × 10−5 a.u., (d.3) 7.5 × 10−6 a.u., and
(d.4) 5 × 10−6 a.u. For the bottom panels the maximum values are (b.1) 4 × 10−5 a.u., (b.2) 2 × 10−5 a.u., and (d) 1.5 × 10−6 a.u.

description of the coefficients of the total and induced electric
fields at each half-space (vacuum and h-BN).

By Fourier transforming Eind
I (x, ky, kz; ω) �→ Eind

I (r; ω) in
Eq. (21) and inserting its value into Eq. (6), we find that
�surf(ω) can be written as

�surf(ω) =
∫ kc

y

0
dky Psurf(ky; ω), (22)

where

Psurf(ky; ω) = − e2

π2ε0 h̄ωv
Re[gI e−2κIx0 ]|kz=ω/v (23)

is the probability that the electron transfers a transverse mo-
mentum h̄ky (y component of the momentum) upon losing
energy h̄ω. Notice that the z component of the wave vector
in Psurf(ky; ω) is fixed by kz = ω/v, implying that the elec-
tron still transfers a parallel momentum equal to h̄ω/v. The
integration of Eq. (22) is performed up to the cutoff value kc

y ,
which is determined by the aperture of the EELS detector.

As we discussed in Sec. II, the spectrum of the momentum-
resolved loss probability and the EEL probability provides
information on the properties of the excited modes in the
anisotropic medium. We thus show in the following the re-
lationship between these two quantities and the excitation of
Dyakonov surface phonon polaritons.

C. Excitation of surface phonon polaritons

As pointed out above, the parallel momentum h̄kz trans-
ferred by the fast electron to the phonon polaritons is
determined by the relation kz = ω/v. Similarly to the bulk
analysis of Sec. II, this relationship represents a horizontal
line in the kykz representation of Fig. 8. Thus, the transferred
momentum can be determined by the crossing between this
horizontal line (kz = ω/v) and the isofrequency hyperbolas
obtained from Eqs. (19a)–(19c) and (20). From the latter
equations one can further obtain the relationship between
the y component of the polariton wave vector (ky) and h̄ω,
which is shown in the left panel of Fig. 9(a) (dashed blue
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curve). We also plot the momentum-resolved loss probability
Psurf(ky; ω) for energies around the upper reststrahlen band.
The probing electron is traveling above the h-BN surface with
an impact parameter of 10 nm and velocity v = 0.1c. Some
similarities between Psurf(ky; ω) and Pbulk(k⊥; ω) [Fig. 3(b),
left panel] become apparent. For instance, the highest values
of Psurf(ky; ω) [red and yellow colors in Fig. 9(a)] coincide
perfectly with the blue dashed curve, demonstrating that the
electron energy losses in the upper band are caused mainly
due to the excitation of hyperbolic phonon polaritons. How-
ever, by comparing Figs. 3(b) and 9(a) we recognize that the
asymptotic behavior (at large momenta) of Psurf(ky; ω) occurs
at a lower energy compared to the asymptotic behavior of
Pbulk(k⊥; ω). While Pbulk(k⊥; ω) tends to the LO⊥ phonon
energy, Psurf(ky; ω) tends to the surface optical (SO⊥) phonon
energy given by the condition ε⊥(ωSO⊥ ) = −1 [derived from
Eqs. (19a)–(19c) and (20) for large momenta]. Importantly,
the latter is a fingerprint of the excitation of surface polariton
modes. In our case (electron traveling in vacuum above the
h-BN surface) these surface modes correspond to Dyakonov
surface phonon polaritons. We confirm this by integrating
Psurf(ky; ω) over ky up to a cutoff momentum h̄kc

y , which yields
the EEL probability �surf(ω) [right panel of Fig. 9(b)]. A
clear peak can be observed at the SO⊥ phonon energy. This
loss peak is slightly asymmetric with a broader tail for lower
energies in the reststrahlen band compared to that for larger
energies in the band. Notice that for energies above SO⊥ the
loss spectrum displays a shoulder arising from background
losses present in the entire upper band at small momentum
[red blurred area for small momentum in the left panel of
Fig. 9(a)].

The excitation of Dyakonov surface phonon polaritons
(within the upper reststrahlen band) by the probing electron
can be observed in real space in Fig. 9(b), where we show the
real part of the z component of the induced electric field at
energies 193 meV (marked as 1) and 198 meV (marked as 2).
The top panels correspond to the evaluation of Re[E ind

z (r; ω)]
in the yz plane (in plane at the interface), and the bottom pan-
els to the evaluation in the xz plane (lateral view, containing
the electron trajectory). One can recognize from the in-plane
views [Fig. 9(b) marked as 1] the formation of wake patterns
and the oscillatory behavior of the induced field in the z direc-
tion. Similarly to the field distribution shown in Fig. 3(c), the
spatial periodicity along the z direction is connected with the
parallel wave vector component kz = ω/v since λz = 2π/kz.
Moreover, the wake wavefronts show interesting propagation
patterns both in the transverse direction from the beam trajec-
tory as well as into the h-BN.

In the top panel of Fig. 9(b) (image labeled as 1), the
wavefronts along the y direction propagate with positive phase
and group velocities relative to the Poynting vector. Indeed,
we find that the dashed blue curve in Fig. 9(a) has a positive
slope (dω/dky > 0), indicating that the projections onto the y
axis of the group and phase velocities are parallel (positive).
We also notice that Dyakonov surface phonon polaritons are
confined to the interface with penetration of the field into the
h-BN interface [Fig. 9(b), bottom image labeled as 1]. For en-
ergies larger than that of the SO⊥ phonon, Dyakonov surface
phonon polaritons are not excited [Fig. 9(b), image labeled

as 2]. Thus, the induced field distributions for those energies
correspond to the reflection of the electron electromagnetic
field at the h-BN surface [Fig. 9(b), top image labeled as 2].
We can also notice that the field penetrates into the h-BN
[bottom panels of Fig. 9(b)], which is connected with the
presence of the red blurred region corresponding to the losses
appearing for lower momenta in Fig. 9(a) (left panel).

When the velocity of the probing electron is increased up
to 50% the speed of light, the momentum parallel to the beam
trajectory h̄kz is reduced and so does the ky component of
the Dyakonov surface phonon polariton. By calculating the
momentum-resolved loss probability Psurf(ky; ω) [left panel
of Fig. 9(c)] and the EEL probability �surf(ω) one obtains a
similar behavior as in Fig. 9(a) for v = 0.1c, except for a one
order of magnitude reduction of both ky and the value of the
loss probability.

The differences in the properties of the Dyakonov surface
phonon polaritons launched by the fast electron beam can
be observed in Fig. 9(d), where we show the real part of
the z component of the induced electric field for v = 0.5c at
energies 193 and 200 meV. Notice that the spatial periodicity
λz of the polariton is longer in this situation compared to that
in Fig. 9(b) as a result of the increased electron velocity. Also,
the penetration of the field into the h-BN medium is larger
compared to that in Fig. 9(b). This increase in the penetration
depth can be attributed to the increase of the background
losses present in the entire upper band [blurred red are in the
left panel of Fig. 9(c)].

For completeness and similar to the analysis presented
above, we study in Appendix H the excitation of phonon
polaritons in the lower reststrahlen band by a fast electron
traveling in aloof trajectory. In the Appendix we show the
momentum-resolved loss probability [Psurf(ky; ω)], the EEL
probability [�surf(ω)], and the wake patterns for this energy
range.

IV. REMOTE EXCITATION OF BULK PHONON
POLARITONS

We have shown in Figs. 9(b) and 9(d) that the electric field
penetrates into the bulk of the h-BN semi-infinite surface,
which is surprising, as one does not expect the excitation
of volume modes in isotropic materials for electron beam
trajectories outside the material. By comparing the angles of
the wake patterns, we demonstrate that indeed volume modes
are excited in h-BN with external beam trajectories.

We first calculated the angle θw of the wake wavefronts
produced by the fast electron traveling through bulk h-BN
with v = 0.5c at h̄ω = 193 meV [Figs. 10(a) and 10(c)], ob-
taining a value of θw = 32.35◦. We compare θw with the
angles of the wake wavefronts produced by the fast electron
traveling in an aloof trajectory 10 nm above the h-BN surface
[Figs. 10(b) and 10(d)]. From this comparison we find that (i)
the angle θws = 24.67◦ of the wake pattern at the h-BN surface
[Fig. 10(b)] is different from θw, and (ii) the angle of the wake
pattern excited inside the h-BN is the same as θw [Fig. 10(d)].
This implies that volume modes are excited by the fast elec-
tron traveling in trajectories outside the anisotropic medium.

Importantly, these findings open the possibility of remotely
exciting volume phonon polaritons. In contrast to isotropic
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FIG. 10. (a) Real part of the z component of the total electric
field in the yz plane produced by a fast electron traveling through
h-BN parallel to its optical axis. (c) Shows Re(E tot

z ) evaluated in
the xz plane and θw is the angle between the z axis and the wake
patterns formed by the bulk polariton. (b) Shows the real part of the
z component of the induced electric field in the yz plane produced
by a fast electron traveling in vacuum 10 nm above a semi-infinite
h-BN surface. (d) Shows Re(E ind

z ) evaluated in the xz plane and θws

is the angle between the z axis and the wake patterns formed by
the Dyakonov surface phonon polariton. We used for the calcula-
tion of the fields an electron velocity equal to v = 0.5c at energy
h̄ω = 193 meV. The field plots are normalized with respect to the
maximum value in each case: (a) 5 × 10−7 a.u., (b) 7.5 × 10−6 a.u.,
(c) 5 × 10−7 a.u., and (d) 1.5 × 10−6 a.u. The insets above (a) and
(b) illustrate the geometry under consideration for each case.

materials, where an aloof electron beam only couples to
surface modes, for anisotropic materials the energy and mo-
mentum matching between the electron and the polaritons
allows for launching of bulk excitations.

V. SUMMARY

We have thoroughly analyzed the excitation of optical
phonon polaritons in hexagonal boron nitride by focused elec-
tron beams for two relevant situations: when the electron
travels through the h-BN bulk and when it travels in vacuum
above a semi-infinite h-BN surface. For the bulk situation, we
have observed that the electron couples to volume phonon
polaritons. We demonstrated that the excitation of these po-
laritonic modes is strongly dependent on the electron velocity

and on the angle between the optical axis of h-BN and the tra-
jectory of the electron beam. Furthermore, we have shown that
Dyakonov surface phonon polaritons can be excited by a fast
electron traveling above the h-BN surface. Interestingly, aloof
electron beams are capable of exciting volume polaritons in
the h-BN.

By a detailed mode analysis, we showed that the elec-
tron beam transfers a specific momentum to the modes. This
momentum transfer determines the properties of the excited
phonon polaritons, and thus controls their phase and group
velocities, as well as their propagation direction. Importantly,
we found that the propagation of the polaritonic waves is
highly asymmetric with respect to the electron beam trajectory
when the trajectory sustains an angle relative to the h-BN
optical axis.

Our findings may offer a way to steer and control the
propagation of the polaritonic waves excited in hyperbolic
materials. Although we studied the specific material h-BN,
our findings can be generalized and can serve as a guide for
the correct interpretation of the different excited modes and
loss channels encountered in EELS experiments of uniaxial
materials.
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APPENDIX A: h-BN DIELECTRIC FUNCTION

The two components of the h-BN dielectric function can
be described by a Drude-Lorentz model as [12]

ε(ω) = ε∞

(
1 + ω2

LO − ω2
TO

ω2
TO − ω2 − iωγ

)
, (A1)

with h̄ωLO, h̄ωTO the phonon LO, TO energies, respectively,
ε∞ is the high-frequency dielectric permittivity, and γ is the
damping constant. The values used for each constant are pre-
sented in Table I.

TABLE I. Parameters used for the in-plane and out-of-plane
dielectric components within the Drude-Lorentz model taken from
[14].

In plane (ε⊥) Out of plane (ε‖)

ε∞ 4.90 2.95
h̄ωTO 168.6 meV 94.2 meV
h̄ωLO 200.1 meV 102.3 meV
γ 0.87 meV 0.25 meV
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APPENDIX B: GREEN’S TENSOR DECOMPOSITION IN
AN ANISOTROPIC MEDIUM

In this work we use the following Fourier transform con-
vention:

F̂(k; ω) =
∫ ∞

−∞
dt

∫
V

d3r F(r; t ) ei(ωt−k·r), (B1)

where F(r; t ) is a smooth vector field representing the elec-
tric or magnetic fields and V stands for the volume in the
Euclidean space R3. Thus, the Green’s tensor satisfying the
wave equation [62–65]

∇2
↔
G(r; ω) + k2

0
↔
ε

↔
G(r; ω) − ∇[∇ ·

↔
G(r; ω)] =

↔
I δ(r) (B2)

can be expressed in k − ω space as follows:
↔
G(k; ω) = [

k ⊗ k − k2
↔
I + k2

0
↔
ε
]−1

. (B3)

From Eq. (B3) one can deduce that the inverse of the
Green’s tensor for a uniaxial medium can be decomposed in

the form
↔
G

−1

= (k2
0ε⊥ − k2)

↔
I + k ⊗ k + k2

0 (ε‖ − ε⊥) ẑ ⊗
ẑ where ε⊥ = εx = εy and ε‖ = εz. This tensor decomposition

allows for finding the following closed expression for
↔
G(k; ω)

[22,23]:

↔
G(k; ω) = 1

k2
0ε‖ε⊥ − k · ↔

ε · k

[
ε‖

↔
I − (ε‖ − ε⊥)ẑ ⊗ ẑ

−k ⊗ k
k2

0

+ ε‖ − ε⊥
k2

0ε⊥ − k2
(k × ẑ) ⊗ (k × ẑ)

]
, (B4)

where we used that the inverse of the Green’s tensor can be

obtained as
↔
G

−1

= adj[
↔
G]/det[

↔
G], with adj[

↔
G] the adjoint of

the Green’s tensor.

APPENDIX C: BULK EEL PROBABILITY FOR
DIFFERENT CUTOFF VALUES kc

⊥

In Fig. 11 we show the EEL probability [�bulk(ω), given by
Eq. (14)] in the vicinity of the lower reststrahlen band for dif-

ferent cutoff values kc
⊥: (a) 1 × 10−2 Å

−1
, (b) 1 × 10−3 Å

−1
,

(c) 1 × 10−4 Å
−1

, and (d) 1 × 10−5 Å
−1

. For the calculation
of �bulk(ω) we consider v = 0.1c.

One can observe that for small cutoff momentum the
EEL probability of the LO‖ phonon energy is better de-
fined. Whereas for large cutoff momenta the sharp peak in

Fig. 11(d) broadens. However, cutoff values of 1 × 10−4 Å
−1

or 1 × 10−5 Å
−1

are not experimentally feasible.

APPENDIX D: ANALYSIS OF THE ASYMMETRIES OF
BULK POLARITONIC WAVES

When the electron beam trajectory makes an angle α rel-
ative to the h-BN optical axis, the propagation of the phonon
polaritons (excited by the fast electron) is highly asymmetric
with respect to the beam trajectory. We analyze these asym-
metries in the following.

The propagation of the polaritonic wave is governed by
its phase velocity and, thus, by the polariton wave vector

FIG. 11. Electron energy-loss probability �bulk(ω) for ener-
gies around the lower reststrahlen band for four different kc

⊥:

(a) 1 × 10−2 Å
−1

, (b) 1 × 10−3 Å
−1

, (c) 1 × 10−4 Å
−1

, and (d) 1 ×
10−5 Å

−1
. The electron travels through h-BN parallel to the optical

axis with velocity v = 0.1c.

k(ω) = (kx, ky, kz ) which fulfills Eq. (3). When the hyper-
bolic phonon polaritons are excited by an electron beam, the
components of k(ω) have also to fulfill Eq. (8), that is, the
components of k(ω) can be obtained from the following two
expressions:

k2
x + k2

y

ε‖
+ k2

z

ε⊥
= k2

0 , (D1a)

ky sin α + kz cos α = ω/v, (D1b)

where we assume that the electron velocity is v =
v(0, sin α, cos α). Moreover, if we decompose k(ω) in cylin-
drical coordinates as k(ω) = (q cos φ, q sin φ, kz ), with φ the
azimuthal angle of the symmetry axis, and substitute it into
Eqs. (D1a) and (D1b), we obtain the following system of
equations:

q2

ε‖
+ k2

z

ε⊥
= k2

0 , (D2a)

q sin φ sin α + kz cos α = ω/v, (D2b)

for q, φ, and kz. Notice that the variable q corresponds to k⊥
for trajectories parallel to the h-BN optical axis. However, for
the oblique trajectory h̄q = (h̄kx, h̄ky) is no longer orthogonal
to the beam trajectory and thus we avoid referring to it as the
transverse momentum. One can deduce from Eqs. (D2a) and
(D2b) that the solutions have cylindrical symmetry (symmet-
ric with respect to the kz axis) when α = 0◦. For cases where
α �= 0◦, this symmetry is broken and the solutions depend on
the azimuthal angle φ. We explore this dependency below.

In Fig. 12 we show the intersection between the h-BN
isofrequency hyperboloids [red surfaces, Figs. 12(a) and
12(c)] and the plane k · v = ω determined by the electron
beam trajectory [blue surfaces, Figs. 12(a) and 12(c)]. Notice
that the direction of the electron beam trajectory is orthogonal
to the blue plane k · v = ω. We analyze an electron beam with
velocity v = 0.1c and a trajectory angle of α = 20◦. Finally,
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FIG. 12. (a) Isofrequency surface (red hyperboloid) for a representative energy in the upper reststrahlen band (180 meV). The blue inclined
plane depicts Eq. (D1b) for an electron beam with v = 0.1c and trajectory angle of α = 20◦. The gray plane represents the different directions
set by the azimuthal angle φ. The 2D plots in (b) show the intersection between the red hyperboloid and the blue plane in the four different
directions determined by φ: 0◦, 60◦, 90◦, and 150◦. The blue dashed lines in the 2D projections depict the trajectory of the electron beam, as
viewed along each direction determined by the angle φ. (c), (d) The same as (a) and (b) but for a representative energy in the lower reststrahlen
band (100 meV).

we chose two representative energies, one in the upper rest-
strahlen band at 180 meV [Fig. 12(a)] and the other one in the
lower reststrahlen band at 100 meV [Fig. 12(c)]. The gray 2D
plots in Figs. 12(b) and 12(d) show the intersection between
the red hyperboloid and the blue plane along four different
directions determined by the azimuthal angle φ: 0◦, 60◦, 90◦,
and 150◦. In the 2D projections the blue dashed lines depict
the beam trajectory, as viewed from the direction determined
by φ. The polariton wave vector along each particular direc-
tion can be obtained from the intersection between the blue
lines and the red hyperbolas. Importantly, one can recognize
the following from the 2D projections:

(1) The intersection between the blue line and the red
hyperbola is asymmetric with respect to the kz axis for φ ∈
(0◦, 180◦), as we observe in Figs. 12(b) and 12(d) for φ =
60◦, 90◦, 150◦.

(2) The direction of largest asymmetry occurs at φ = 90◦
(kykz plane) and the direction of symmetric propagation oc-
curs at φ = 0◦ (kxkz plane).

(3) The intersections between the blue lines and the red
hyperbolas are also asymmetric (or symmetric) with respect
to the electron beam trajectory (blue dashed line).

To better understand the asymmetries in the propagation
of the polaritonic waves, we focus on the direction of largest
asymmetry: φ = 90◦ (equivalently, the kykz plane). From
Eqs. (D1a) and (D1b) one can obtain the following two so-
lutions for the polariton wave vector in the kykz plane:

k(1) = ω

v

[
ε‖ sin α + √

ε‖ε⊥� cos α

ε⊥ cos2 α + ε‖ sin2 α

]
ŷ

+ ω

v

[
ε⊥ cos α − √

ε‖ε⊥� sin α

ε⊥ cos2 α + ε‖ sin2 α

]
ẑ, (D3a)

k(2) = ω

v

[
ε‖ sin α − √

ε‖ε⊥� cos α

ε⊥ cos2 α + ε‖ sin2 α

]
ŷ

+ ω

v

[
ε⊥ cos α + √

ε‖ε⊥� sin α

ε⊥ cos2 α + ε‖ sin2 α

]
ẑ (D3b)

with

� =
(v

c
cos α

)2
ε⊥ +

(v

c
sin α

)2
ε‖ − 1. (D4)

From Eqs. (D3a) and (D3b) one can recognize that k(1)
z �= k(2)

z ,
showing the asymmetry in the propagation of the polaritonic
wave. Moreover, the angles θ

(1)
k and θ

(2)
k defined by k(1),

k(2) vectors with respect to the electron beam trajectory [see
Figs. 6(b) and 6(e)] satisfy the following relations:

tan
(
θ

(1)
k + α

) = ε‖ sin α + √
ε‖ε⊥� cos α

ε⊥ cos α − √
ε‖ε⊥� sin α

, (D5a)

tan
(
θ

(2)
k − α

) = ε‖ sin α − √
ε‖ε⊥� cos α

ε⊥ cos α + √
ε‖ε⊥� sin α

. (D5b)

When α = 0◦, one can deduce from Eqs. (D5a) and (D5b) that

tan θ
(1)
k =

√(v

c

)2
ε‖ − ε‖

ε⊥
, (D6a)

tan θ
(2)
k = −

√(v

c

)2
ε‖ − ε‖

ε⊥
. (D6b)

Therefore, θ
(1)
k = θ

(2)
k = θk for this particular case of sym-

metric propagation. Notice that θk is also preserved in any
other azimuthal direction.

We can observe from Eqs. (D3a) and (D3b) that k(1), k(2)

depend on the electron velocity v. This dependency provides
information on the condition that the electron velocity needs
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to satisfy for the electron beam to excite the polaritonic waves.
Indeed, by imposing real value solutions to Eqs. (D5a) and
(D5b), one obtains the following condition on v:

v2

c2
[ε2

⊥ε‖ cos2 α + ε2
‖ε⊥ sin2 α] > ε⊥ε‖. (D7)

This last relationship results in the inequality

v2

c2
ε‖ >

ε‖
ε⊥

, (D8)

when α = 0◦, which coincides exactly with the first inequality
in Eq. (16) obtained in the main text. As we discuss in Sec. II
E, Eq. (D8) reveals the condition on the electron velocity for
exciting phonon polaritons or emitting Cherenkov radiation.

We show now that we can recover the properties of the
excited wave in an isotropic dielectric medium from the pre-
vious expressions. Assuming that the medium has dielectric
function equal to ε⊥ = ε‖ = ε > 0, the condition (D8) results
in the canonical relation for Cherenkov radiation: v > c/

√
ε.

Moreover, the two wave-vector solutions k(1), k(2) given by
Eqs. (D3a) and (D3b) result in

k(1) = ω

v
M (ŷ −

√
� ẑ), (D9a)

k(2) = ω

v
M (ŷ +

√
� ẑ), (D9b)

with

M =
[

sin α − cos α

cos α sin α

]
. (D10)

It is worthwhile noting that M is an orthogonal matrix. This
implies that the angles θ

(1)
k and θ

(2)
k are always equal. Thus,

the propagation of the wake patterns excited in an isotropic di-
electric media is always cylindrically symmetric with respect
to the electron beam trajectory.

APPENDIX E: MOMENTUM-RESOLVED LOSS AND EEL
PROBABILITIES FOR ELECTRON TRAJECTORIES

OBLIQUE TO THE OPTICAL AXIS OF h-BN

As we show in Appendix D, the cylindrical symmetry
in the propagation of the phonon polariton wave is broken
when the electron beam trajectory is not parallel to the h-
BN optical axis. This break in symmetry means that the
momentum-resolved loss probability Pbulk(q; ω) is no longer
constant along the azimuthal direction but it depends on the
angle φ [66]. Notice also that the momentum h̄q = (h̄kx, h̄ky)
is no longer perpendicular to the beam trajectory re(t ) =
vt (0, sin α, cos α). In fact, the two orthogonal directions to
re(t ) are (i) the x direction and (ii) the direction set by the
unit vector n̂α = (0, cos α,− sin α). Thus, the two transverse
components (to the beam trajectory) of the polariton wave
vector are kx and

kα = k · n̂α = ky cos α − kz sin α. (E1)

Furthermore, the components of the polariton wave vec-
tor k(ω) excited by the fast electron beam need to satisfy
Eq. (D1b). By solving Eqs. (D1b) and (E1) one finds that ky

and kz can be written in terms of kα as

ky = k(α)
y = kα cos α + ω

v
sin α, (E2a)

kz = k(α)
z = −kα sin α + ω

v
cos α. (E2b)

Following Eq. (10), we can define the probability for the fast
electron to transfer a transverse momentum (h̄kx, h̄kα ) upon
losing energy h̄ω as

Pbulk
α (kx, kα; ω) = − 2e2

(2π )3h̄c2ε0 cos α
Im[v̂ ·

↔
Gkα

· v̂], (E3)

where
↔
Gkα

=
↔
G(kx, k(α)

y , k(α)
z ) and k(α)

y , k(α)
z are given by

Eqs. (E2a) and (E2b), respectively. On the other hand, the
electron energy-loss probability �bulk

α (ω) can be obtained by
integrating Pbulk

α (kx, kα; ω) over the momentum coordinates
[Eq. (9)]

�bulk
α (ω) =

∫
dkx

∫
dky Pbulk

α (kx, ky; ω)

=
∫

dkx

∫
dkα cos αPbulk

α (kx, kα; ω)

=
∫ qc

0
q dq

∫ 2π

0
dφ Pbulk

α (q, φ; ω), (E4)

where the last equality follows by expressing q in cylindrical
coordinates. Notice that the integration over the magnitude of
q is performed up to the cutoff value qc.

In Fig. 13 we show the momentum-resolved loss proba-
bility Pbulk

α (kx, kα; ω) and the EEL probability �bulk
α (ω) for

representative energies inside the reststrahlen bands when v =
0.1c and two different trajectory angles α: 20◦ and 45◦. One
can observe in the figure that the EEL features are similar but
the momentum-resolved loss probability shows asymmetries
for different energies in the reststrahlen bands.

APPENDIX F: INDUCED ELECTROMAGNETIC FIELD
FOR AN ELECTRON TRAJECTORY ABOVE THE

SURFACE OF A UNIAXIAL ANISOTROPIC SEMI-INFINITE
MEDIUM

To obtain the induced electromagnetic field when the elec-
tron is traveling above the surface of an anisotropic media, we
solve the following wave equation (derived from Maxwell’s
equations) satisfied by the total electric field [67]

∇2Etot(r; t ) − μ0ε0
∂2

∂t2
[
↔
ε Etot(r; t )]

= μ0
∂

∂t
J(r; t ) + ∇[∇ · Etot(r; t )], (F1)

where ε0 and μ0 stand for the vacuum permittivity and
permeability, respectively, and J(r; t ) = ρ(r; t )v = −eδ(x −
x0, 0, z − vt )(0, 0, v) is the current density corresponding to
the electron traveling with velocity v = vẑ and impact param-
eter x0. We show in Fig. 7 of the main text a schematics of the
considered geometry.

By Fourier transforming Eq. (F1) with respect to the vari-
ables y, z, and t and solving for the electric field separately
outside (label I) and inside (label II) the anisotropic medium,
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FIG. 13. The color plots in (a) and (b) show the momentum-resolved loss probabilities Pbulk
α (kx, kα; ω) for representative energies within

the upper reststrahlen band (170, 180, 190, and 195 meV) when the angle α of the electron beam trajectory is equal to (a) 20◦ and (b) 45◦

with v = 0.1c. The right panels in (a) and (b) show �bulk
α (ω) obtained by integrating Pbulk

α (q; ω) over the reciprocal coordinates (q, φ) up to

the cutoff value qc = 0.05 Å
−1

. (c), (d) Analogous to (a) and (b) but for representative energies within the lower reststrahlen band (96, 98,
100, and 102 meV). The color plots are normalized with respect to the maximum value in each case: (a.1) 500 a.u., (a.2) 1500 a.u., (a.3) >

1500 a.u., (a.4) 1250 a.u.; (b.1) >300 a.u., (b.2) 2000 a.u., (b.3) >2500 a.u., (b.4) >2500 a.u.; (c.1) 1250 a.u., (c.2) 4000 a.u., (c.3) >6000 a.u.,
(c.4) >10 000 a.u.; (d.1) >2000 a.u., (d.2) >5000 a.u., (d.3) >8000 a.u., (d.4) >8000 a.u.

we obtain the following solutions for the components of the
total electric field:

E (I)
x (x, ky, kz; ω) = BI e−κIx − πe

ε0
sign(x − x0)δ(ω − kzv)

× e−κI|x−x0|, (F2a)

E (I)
y (x, ky, kz; ω) = DI e−κIx − i

πe

ε0

ky − ω
c2 vy

κI
δ(ω − kzv)

× e−κI|x−x0|, (F2b)

E (I)
z (x, ky, kz; ω) = GI e−κIx − i

πe

ε0

kz − ω
c2 vz

κI
δ(ω − kzv)

× e−κI|x−x0|, (F2c)

E (II)
x (x, ky, kz; ω) = AIIe

κo
IIx − iFII

kzκ
e
II(

κo
II

)2 − k2
y

eκe
IIx, (F2d)

E (II)
y (x, ky, kz; ω) = CIIe

κo
IIx + FII

kykz(
κo

II

)2 − k2
y

eκe
IIx, (F2e)

E (II)
z (x, ky, kz; ω) = FIIe

κe
IIx, (F2f)

where

κ2
I = k2

y + k2
z − ω2

c2
,

(
κe

II

)2 = k2
y + ε‖

ε⊥

(
k2

z − ω2

c2
ε⊥

)

and

(
κo

II

)2 = k2
y + k2

z − ε⊥
ω2

c2
. (F3)

The coefficients AII, BI, CII, DI, FII, and GI can be found
from the application of the standard boundary conditions for
the electric field at the interface (x = 0) between both media,
that is,

E (II)
y |x=0 = E (I)

y |x=0, E (II)
z |x=0 = E (I)

z |x=0,

ε⊥E (II)
x |x=0 = E (I)

x |x=0, (F4)

together with the Gauss law and the boundary conditions for
the magnetic field.
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APPENDIX G: MOMENTUM-RESOLVED LOSS AND EEL
PROBABILITIES FOR ELECTRON TRAJECTORIES
ABOVE THE SURFACE OF h-BN PARALLEL TO THE

OPTICAL AXIS

By solving the linear system of equations set by the bound-
ary conditions [Eq. (F4)], one finds that each coefficient in
Eqs. (F2a)–(F2f) can be expressed as

AII = ρ̃ aII, BI = ρ̃ bI, CII = ρ̃ cII,

DI = ρ̃ dI, FII = ρ̃ fII, GI = ρ̃gI,

with ρ̃ = −2πeδ(ω − kzv)e−κIx0/ε0. Thus, we obtain that the
induced electric fields in vacuum (labeled as I) and h-BN
(labeled as II) are given by [Eqs. (F2a)–(F2f)]

Eind
I (x, ky, kz; ω) = (bI, dI, gI ) ρ̃ e−κIx, (G1a)

Eind
II (x, ky, kz; ω) = (aII, cII, 0) ρ̃ eκo

IIx

+
(

−i
kzκ

e
II(

κo
II

)2 − k2
y

,
kzky(

κo
II

)2 − k2
y

, 1

)

× ρ̃ fII eκe
IIx. (G1b)

Substituting Eq. (G1a) into Eq. (6), one obtains that the
EEL probability �surf(ω) can be written as

�surf(ω) = e

π h̄ω
Re

[
Eind

I (re; ω) · ẑ e−iωte
]

=
∫ kc

y

0
dky Psurf(ky; ω), (G2)

with h̄kc
y the maximum momentum of the electrons that can

pass through the collection aperture of the detector in the y
direction, and

Psurf(ky; ω) = − e2

π2ε0 h̄ωv
Re[gIe

−2κIx0 ]|kz=ω/v, (G3)

FIG. 14. The left panel in (a) displays the momentum-resolved loss probability Psurf(ky; ω) normalized to the maximum value (>0.6 a.u.)
in the vicinity of the lower reststrahlen band for x0 = 10 nm and v = 0.1c. The right panel in (a) shows the EEL probability �surf(ω) obtained

by integrating Psurf(ky; ω) over ky up to kc
y = 0.09 Å

−1
. (c) Same as in (a) but considering v = 0.5c. For this case the maximum value of the

momentum-resolved loss probability is 2 a.u. The color maps in (b) and (d) show the real part of the z component of the induced electric
field for the energies: 100 (marked 1, 3) and LO‖ (marked 2, 4). The top panels in (b) and (d) correspond to the in-plane views (yz plane)
of the induced field, while the bottom panels correspond to the out-of-plane views (xz plane). The field plots are normalized with respect to
the maximum value in each case. For the top panels: (b) 7.5 × 10−6 a.u., (d.3) 4 × 10−7 a.u., and (d.4) 3 × 10−7 a.u. For the bottom panels:
(b) 5 × 10−6 a.u., (d.3) 3 × 10−7 a.u., and (d.4) 4 × 10−7 a.u.
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where h̄kz = h̄ω/v is the momentum transferred by the elec-
tron to the polaritons along the beam trajectory.

APPENDIX H: ELECTRON ENERGY-LOSS PROBABILITY
FOR ENERGIES AROUND THE LOWER RESTSTRAHLEN

BAND FOR ELECTRON TRAJECTORIES ABOVE THE
SURFACE OF h-BN

In the left panel of Fig. 14(a) we show the momentum-
resolved loss probability Psurf(ky; ω) for an electron traveling
above an h-BN surface for energies around the lower rest-
strahlen band. The probing electron travels above the surface
at an impact parameter of 10 nm and v = 0.1c. The blue
dashed line corresponds to the bulk phonon polariton disper-
sion [Eq. (3)]. We can recognize some similarities between
Psurf(ky; ω) and Pbulk(k⊥; ω) [compare the left panels of
Figs. 4(b) and 14(a)]. For instance, the maximum values
of Psurf(ky; ω) are close to the bulk dispersion (blue dashed
line). Interestingly, this bulk dispersion corresponds to the
envelope curve of Psurf(ky; ω) implying that electron energy
losses in the lower band are mainly due to bulk hyper-
bolic phonon polariton excitations. To obtain spectroscopic
information on the excitations in the lower band, we calcu-
late the EEL probability �surf(ω) by integrating Psurf(ky; ω)

over ky up to a cutoff kc
y [right panel in Fig. 14(a)]. Sim-

ilarly to �bulk(ω) [Fig. 4(b), right panel], �surf(ω) [right
panel in Fig. 14(a)] exhibits a uniform loss probability be-
tween TO‖ and LO‖ which depends on the selected cutoff
momenta h̄kc

y .
In Fig. 14(b) we show the real part of the z component

of the induced electric field for the same electron velocity
and impact parameter as in Fig. 14(a), for two different en-
ergies marked as 1 and 2 in Fig. 14(a). We can recognize the
excitation of the wake fields in the h-BN surface for those
energy losses [compare the top panels labeled as 1 and 2 in
Fig. 14(b)]. The bulk nature of the excited modes is revealed in
the bottom panels of Fig. 14(b), where we show the z compo-
nent of the real part of the induced electric field Re[E ind

z (r; ω)]
in the xz plane. In this lateral view of the field distribution one
notices the excitation and propagation of the field into the bulk
from the h-BN surface.

Figures 14(c) and 14(d) show Psurf(ky; ω), �surf(ω) and the
induced field distribution when the electron velocity is v =
0.5c. It is worth noting that the blue dashed line superimposed
on Psurf(ky; ω) [Fig. 14(c), left panel] corresponds to another
branch of Dyakonov’s dispersion relation given by Eqs. (19a)–
(19c) and (20).
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