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Abstract

This study presents the combination of Raman spectroscopy with machine learning

algorithms as a prospective diagnostic tool capable of detecting and monitoring relevant

variations of pH and lactate as recognized biomarkers of several pathologies. The

applicability of the method proposed here is tested both in vitro and ex vivo. In a

first step, Raman spectra of aqueous solutions are evaluated for the identification of
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characteristic patterns resulting from changes in pH or in the concentration of lactate.

The method is further validated with blood and plasma samples. Principal Component

Analysis is used to highlight the relevant features that differentiate the Raman spectra

regarding their pH and concentration of lactate. Partial Least Squares regression models

are developed to capture and model the spectral variability of the Raman spectra.

The performance of these predictive regression models is demonstrated by clinically

accurate predictions of pH and lactate from unknown samples in the physiologically

relevant range. These results prove the potential of our method to develop a non-

invasive technology, based on Raman spectroscopy, for continuous monitoring of pH

and lactate in vivo.

Introduction

Quantification of pH and lactate is a common clinical procedure for evaluating the severity of

diseases and pathologies, such as sepsis, hypoxia, fatigue, shock and cardiac arrest, and as-

sessing appropriate therapeutic measures. Little variations of these physiological parameters

might reflect an abnormal behaviour of a metabolic pathway associated with pathological

findings.1,2

In the glycolysis, glucose is transformed to pyruvate, which in presence of oxygen, en-

ters the mitochondria and is transformed into adenosine triphosphate (ATP), the energy-

carrying molecule. The consumption of ATP by the cells generates hydrogen ions which

are mainly consumed in the aerobic pathway, specifically in the oxidative phosphorylation

process. When oxygen is not available, pyruvate is converted to lactate. At normal con-

ditions, most of the energy comes from the aerobic pathway, but to some extent lactate is

also produced, meaning that the anaerobic pathway is also active.2,3 A decreased clearance

or an overproduction of lactate, regardless of being caused by oxygen deprivation or not,

or a combination of both, can generate high lactate levels that are related with morbidity

and mortality in many cases. However, the pathogenesis differs among different diseases or
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even patients. In this light, it would lead to incalculable risks taking a hasty diagnostic

snapshot of elevated lactate, based on a single measurement at one specific moment, without

considering the systemic clinical picture.1,3

Current clinical diagnostics, as blood gas analysis, voltammetric-based or liquid chro-

matography detection methods, require arterial blood sampling, which can only be done

intermittently. Moreover, these techniques require significant time for analysis, are quite

expensive, expose healthcare professionals to patients’ blood, and result in iatrogenic blood

loss.4 Considering these limitations, an effort has been put on developing continuous pH and

lactate monitoring systems to allow for robust decision-making and timely clinical interfer-

ence in critical care medicine. The capabilities and strengths of biophotonic methods dis-

tinctly showcase the importance that spectroscopy gains in medical diagnostics.5,6 Although

some attractive methods based on microwave sensors7 or near-infrared spectroscopy-based

sensors8 for non-invasive monitoring of pH and lactate have been proposed, so far none of

them has shown enough predictive accuracy or reliability in clinical use.

Raman spectroscopy, as a promising and emerging photonic technique for diagnostics,

has become of general interest in medical research. The inelastic scattering of the incident

photons due to specific vibrational modes of individual molecules provides the chemical fin-

gerprint of the sample being studied, hence, delivering highly specific and diagnostically

valuable information. The great ability to non-invasively provide high molecular selectivity

makes Raman spectroscopy an ideal method for chemical quantification in medical diag-

nostics.9 Moreover, Raman instrumentation is sufficiently mature for studying the human

organism and physiological parameters. In fact, several studies have already demonstrated

that Raman spectroscopy could be used for rapid biomedical analysis ex vivo as well as

for continuous monitoring in vivo.10–12 The interpretation of Raman spectra is far from

being straightforward. Due to the generally weak Raman signal and high fluorescence of

biomolecules by nature, as well as the overlapping of spectral features from different con-

stituents present in a sample, peak identification and accurate prediction become a serious
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challenge. Nevertheless, the combination of Raman spectroscopy with a proper sequence of

data preprocessing methods and machine learning algorithms results in a very powerful tech-

nology for unveiling hidden features. Machine learning algorithms are characterized by their

capacity to identify relevant features and extract valuable knowledge from data that allows

them to learn how to handle new situations. The potential of such algorithms for quantifi-

cation of complex Raman spectroscopy signals has been amply demonstrated. 13 However,

although such a combination has already been used to analyze pH and lactate for different

purposes, such as food control 14 or sensing of aqueous solutions, 15,16 the lack of evidence

to achieve clinical needs still generates doubts about its utility to quantify complex media.

In the present study, we consider the applicability of Raman spectroscopy together with

machine learning for quantitative and qualitative analysis of both pH and lactate in complex

body fluids, as blood and plasma. This approach represents a significant step towards diag-

nosis of related pathologies, as for example hypoxia,17 where lactate≥ 4.8mM and pH≤ 7.20

are defined as standards for intervention, or in case of sepsis,18 where lactate≥ 2mM reflects

physiological anomaly.

Methods

Sample preparation and acquisition of Raman spectra

In the current study both in vitro and ex vivo samples were analyzed. First, spectroscopic

measurements were carried out with aqueous solutions, such as milliQ water and phosphate-

buffered saline (PBS, 10010015, Thermo Fisher Scientific), to demonstrate proof-of-principle.

For a total number of 50 samples, pH was varied from 6.80 to 7.60, by adding 1M sodium

hydroxide (NaOH, S5881, Sigma-Aldrich) or hydrochloric acid (HCl, H1758, Sigma-Aldrich)

diluted at 10%. For each sample, three consecutive spectra were collected; each spectrum was

formed by accumulation of three measurements with an integration time of 10 s. Similarly,

Sodium L-Lactate (71718, Sigma-Aldrich) was used to vary the concentration of lactate,
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firstly for the range of 0 - 30mM (70 samples) and secondly for the physiologically relevant

range of 0 - 10mM (60 samples).

In a second step, blood from domestic pigs was analyzed. Blood, stored at 4◦C, was

provided by Biodonostia Health Research Institute. pH values from 30 samples were studied

in the range from 6.97 to 7.53. For lactate, based on the initial concentration in blood, further

concentrations were prepared by adding sodium lactate. Due to the higher complexity in

sample handling, a slightly broader range than the physiological range has been chosen (2 -

18mM) and 32 samples prepared. For achieving a better signal-to-noise ratio (SNR) in

blood, four consecutive spectra were collected per sample and each spectrum was obtained

by accumulating five measurements with an integration time of 10 s.

Additionally to blood samples, the variation of lactate was also studied in plasma samples,

as a second example for analyzing complex media. Plasma was extracted from blood samples

by centrifugation at 1000 g for 30 minutes and collection of the supernatant. Measurement

specifications were maintained except the integration time, which was reduced to 6 s to avoid

saturation of the detector.

To perform the Raman measurements, 250µL of the samples to be analyzed were de-

posited in a well on a fused silica substrate of a customized Raman spectroscopy system in

inverted microscope configuration, consisting of: a continuous wave diode laser, emitting at

785 nm with an emission power of 130 mW, as Raman excitation source; and a grating spec-

trometer (EAGLE Raman-S with Andor iVac 316 detector, Ibsen Photonics), with a spectral

resolution of 4 cm-1, to collect the backscattered Raman light. As described in Figure S2,

liquid samples were excited from below such that the effect of evaporation was minimized

and unstable focusing and excitation was avoided. Measurements were performed at room

temperature (23◦C). All experimental procedures were conducted in strict compliance with

European and Spanish regulations on the protection of animals used for scientific purposes

(European Directive 2010/63/EU and Spanish Royal Legislative Decree 53/2013).
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Pre-processing of Raman spectra

Analysis of Raman data in biological samples is extremely challenging due to their hetero-

geneous nature. Unwanted contributions caused by different background and noise sources,

might hide weak Raman signals from the sample under test. Therefore, prior to develop

any predictive model, preprocessing of raw Raman data is essential for the correct inter-

pretation of the Raman spectra and for a reliable quantification of the samples. Hence, all

Raman spectra were first trimmed to the range from 300 cm-1 to 1700 cm-1 and preprocessed

in MATLAB (MathWorks®). An open toolbox19 was used to apply a 6th order Extended

Multiplicative Signal Correction (EMSC) to the raw spectra. Interfering additive and mul-

tiplicative artifacts were removed by scaling all the Raman spectra to the mean spectrum.20

The median of consecutive spectra from each sample was taken to eliminate spike artifacts

sporadically produced by cosmic rays. All Raman spectra were smoothed using a Savitzky-

Golay filter with a window of 15 points and 3rd order polynomial. Finally, the asymmetric

least squares (ALS) method was used to subtract a smoothed background produced by the

intrinsic fluorescence of the molecules.21 The integrity of the Raman bands is retained by

giving higher relevance to positive residuals.22

Multivariate analysis

Simultaneous analysis and combination of different variables enables the development of ef-

ficient predictive models. However, the correct extraction of significant features within thou-

sands of misleading, correlated and redundant variables to be handled is a major challenge.22

The high number of variables, or pixels in this case, obtained by Raman spectroscopy might

lead to overfitting and consequent incapacity of the model to generalize. Machine learning

is used to reliably identify and model the spectral variability from preprocessed spectra.13,22

Partial Least Squares (PLS) and Principal Component Analysis (PCA) are both dimension-

ality-reduction techniques used in machine learning. PCA was used to reveal any pattern

and facilitate visualization and interpretation of the spectral data. The discrimination of
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spectra as a function of their pH or concentration of lactate was evaluated by projecting

the data onto the most relevant principal components.22 Moreover, Partial Least Squares

(PLS) was used to develop predictive regression models that define the correlation between

the spectral variability and the pH and the concentration of lactate of the samples.23,24 To

evaluate the performance of predictive models, such as those resulting from PLS, machine

learning algorithms consist of two stages. First, the prediction model is built and calibrated

with a training set of measurement data and validated with a new testing set of unknown

samples afterwards. For model calibration, leave-one-out cross-validation (LOOCV) method

was used to determine an optimum set of latent vectors, and hence, avoiding overfitting.

The root mean square error of prediction (RMSEP) and the coefficient of determination R2

were used as indicators of the quality of the predictive model. Whereas RMSEP indicates

the standard deviation of the predictions from the observed values, R2 reflects the amount

of variance in the dependent variable that is explained by the model, or in other words, how

well is the data fitting the model (the goodness of fit). All the analysis was performed in

MATLAB environment.

Results and discussion

To exclude secondary effects of complex media, our method was firstly validated with a

set of aqueous samples. A protocol was developed for the determination of physiological

pH and lactate, considering the entire process chain from sample preparation over Raman

measurements to data evaluation. Following the protocol, the variation of pH and lactate in

blood and plasma samples from domestic pigs was investigated.
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Figure 1: Preprocessed Raman spectra of PBS solutions with different pH values from 6.8 to 7.6.
Although the spectral range from 500 to 1500 cm-1 is studied, only the range from 850 to 1180 cm-1

is shown for better visualization.

pH and lactate monitoring in aqueous solutions

pH analysis

Due to purity of milliQ water and its subsequent low buffering capacity, PBS has been

used to avoid unwanted additional pH variations when exposed to air. As explained pre-

viously, Raman spectroscopy provides specific information about the vibrational modes of

the molecules. Considering that pH is a metric to determine the acidity of a solution by

measuring the concentration of hydrogen ions, the variation of pH, unlike lactate, is not di-

rectly quantifiable by Raman spectroscopy. However, the variation of pH can indeed induce

changes either in the structure, the concentration or the chemical bonds of the molecules in

the sample being measured, which are eventually detectable by Raman spectroscopy and can

be quantified and correlated with pH. In the case of PBS, which is a buffered solution, pH

is expected to provoke changes to the salts included. In Figure 1, Raman bands at 876 cm-1

and 1076 cm-1, and the peak at 989 cm-1, which have previously been related to H2PO4 and

HPO4 by Fontana et al.,25 have shown to be pH-dependent. These spectral variations are

highlighted by applying PCA. Figure 2a clearly separates the different samples as a function

of their pH. The loading plot in Figure 2b substantiates that most of the spectral variation
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Figure 2: Multivariate analysis of preprocessed spectra from PBS solutions with varying values of
pH in the physiological range of 6.8 - 7.6. (A) PCA score plot (PC-1 vs. PC-2), (B) PCA loading
plot, (C) prediction of the PLS regression model with an optimum number of latent vectors of
N = 3; the values of RMSEP and R2 are characteristic of the model and are calculated with respect
to the target curve, (D) and regression coefficient plot of the PLS regression model.

captured by the first two components (85% of the variance) is indeed caused by the effect

of pH in the vibrational modes of both H2PO4 and HPO4.

A predictive PLS regression model has been developed for the prediction of pH in PBS

samples. The total of 50 samples were divided into two sets, 40 training samples for calibra-

tion and 10 testing samples. In Figure 2c, the small RMSEP of 0.04 and R2 of 0.98 obtained

by the PLS predictive model for unknown samples demonstrates the quality of the model

and the feasibility of the method to detect pH variations in aqueous solutions. Figure 2d

shows the main contribution of H2PO4 and HPO4 in the predictive model.

9



Lactate analysis

The fingerprint region of pure sodium-lactate powder is shown in Figure S1. Some of the

characteristic Raman peaks of lactate, previously reported,26,27 are indicated: a sharp pre-

dominant peak at 853 cm-1 associated with a C-C single bond vibration, at 543 cm-1 from

CO2 wagging, at 1040 cm-1 and 1053 cm-1 due to C-CH3 stretching vibrations, at 1081 cm-1

caused by C–O vibrations, and at 1459 cm-1 from asymmetric CH3 deformation modes. Some

other visible Raman bands in Figure S1 have not been addressed, but are characteristic of

sodium-lactate.

Figure 3: Aqueous solutions with different concentrations of sodium lactate. (A) Raw Raman
spectra in the region from 500 cm-1 to 1500 cm-1 with varying concentrations of lactate in the range
of 0 - 30mM, (B) and its corresponding preprocessed spectra. (D) Peak at 853 cm-1, associated
with a C-C single bond vibration, for different concentrations of lactate in the range of 0 - 30mM,
(D) and in the physiological range of 0 - 10mM.

As mentioned before, the first step was to identify specific Raman features of lactate in
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Figure 4: Multivariate analysis of preprocessed spectra from aqueous solutions with varying con-
centrations of lactate in the physiological range of 0 - 10mM. (A) PCA score plot (PC-1 vs. PC-2),
(B) PCA loading plot, (C) prediction of the PLS regression model with an optimum number of
latent vectors of N = 3; RMSEP and R2 defined as in Figure 2, (D) and regression coefficient plot
of the PLS regression model.

milliQ water solutions. Figure 3a and Figure 3b present the raw data and its corresponding

preprocessed spectra from the set of samples with varying concentrations of lactate in a

range between 0 and 30mM. In raw data, it is extremely difficult to recognize any pattern.

However, a completely different picture emerges after applying the described preprocessing,

which demonstrates the importance of this step. Several regions of the spectra undergo

fluctuations in the intensity of the Raman features. In Figure 3b, Raman bands from pure

sodium lactate as well as some additionally reported peaks,28 such as 930 cm-1 or 1125 cm-1,

are observed. Figure 3c is a magnification of the predominant peak at 853 cm-1, which

clearly shows how the intensity of the peak varies in correlation with the concentration of
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lactate; the higher the concentration of lactate, the higher the intensity of the peak. When

the concentration of lactate is reduced to the common physiological range between 0 and

10mM, lactate Raman features are still evident despite the little differences between the

spectra, as shown in Figure 3d. The great advantage of using multivariate analysis is the

possibility to take into account many features of the spectra instead of single peaks, thereby

unveiling hidden information. Moreover, multivariate analysis omits redundant information

so that reliable and accurate predictive models are developed.

To have a better visualization of the spectra, preprocessed spectra are projected onto the

first two principal components, that explain 78% of the spectral variation (Figure 4a). The

loading plot of PC-1 and PC-2 unveils the influence of lactate in the spectral variation cap-

tured by these components (Figure 4b). Spectral features associated with lactate constitute

a dominant part. Even Raman peaks, such as 660 cm-1, 775 cm-1, 1125 cm-1 or 1315 cm-1,

that were not perceptible in Figure 3b by eye, are now gathered by PCA.

A predictive PLS regression model has been developed based on preprocessed spectra. A

total of 60 samples were divided into two sets, 48 training samples for calibration and 12 test-

ing samples. The model was calibrated using the leave-one-out cross-validation (RMSECV)

method and the optimum number of latent vectors was determined by Wold’s criterion.29

The predictive model has been successfully tested with unknown samples providing a very

small RMSEP of 0.32mM and R2 of 0.99, which corroborates the quality of the model. Fig-

ure 4c compares the predicted and real values of lactate concentration. To understand how

strongly each Raman band determines the model, the regression coefficients of the calibrated

PLS model are shown in Figure 4d. The major contributing Raman features are associated

with lactate.
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Figure 5: Multivariate analysis of preprocessed spectra from pig blood with varying values of pH in
the range of 6.97 - 7.53. (A) PCA score plot for the first three principal components, (B) prediction
of the PLS regression model with an optimum number of latent vectors of N = 6; RMSEP and R2

defined as in Figure 2.

pH and lactate monitoring in blood

pH analysis

To further study the efficacy of our method, Raman spectra from blood samples from domes-

tic pigs, as representatives for real physiological samples, have been analyzed at different pH

values (Figure S3). As mentioned before, the objective is to identify and indirectly quantify

variations of pH by detecting Raman bands from molecules that are sensitive to pH. Vibra-

tional modes of hemoglobin have actually been recognized as the main responsible ones for

the Raman spectrum of blood.30

In Figure 5a, the projection of spectra onto the first three principal components shows

a clear clustering of the spectra with respect to their pH value. The loading plot in Figure

S4a unveils some spectral variation in Raman bands, such as 420 cm-1, 567 cm-1, 754 cm-1,

789 cm-1, 1002 cm-1, 1207 cm-1, 1222 cm-1, 1357 cm-1, 1547 cm-1 and 1639 cm-1, which have

already been assigned to hemoglobin.31 It has been reported that hemoglobin also exhibits

characteristic active Raman bands in the region from 1300 cm-1 to 1650 cm-1, however, it

is interesting to notice that many of these reported peaks could not be precisely identified

in Figure S4a. Nevertheless, the high variability of the spectra in this region indicates pH-
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induced modifications in the vibrational modes of hemoglobin.

A PLS model has been implemented for the prediction of pH in blood from preprocessed

spectra. The model was calibrated with 22 samples for future validation with 8 new samples.

Figure 5b displays the excellent predictive ability of the model for unknown samples, which

is reflected in the small RMSEP of 0.05 and the good R2 of 0.92, when the reference and

the predicted values of pH are compared. Each Raman band associated with hemoglobin is

affected differently by the variation of pH, and hence, contributes individually to the model.

For that reason, it is not straightforward to identify exact positions of the characteristic

Raman peaks of hemoglobin in the regression vector in Figure S4b. Nonetheless, stronger

contributions from regions around 420 cm-1, 1000 cm-1, 1200 cm-1 and 1600 cm-1 are observed.

Lactate analysis

Figure 6: Multivariate analysis of preprocessed spectra from pig blood with varying concentrations
of lactate in the range of 2 - 18mM. (A) PCA score plot for the first three principal components,
(B) prediction of the PLS regression model with an optimum number of latent vectors of N = 4;
RMSEP and R2 defined as in Figure 2.

Unlike in the case of pH, lactate is quantified by detecting characteristic Raman peaks in

the preprocessed spectra from blood, which are displayed in Figure S5. The discriminating

capability of PCA is demonstrated in Figure 6a, where the projection of preprocessed spectra

in the first three principal components allows for visual separation of the samples into distinct

groups. Looking at the loading plot in Figure S6a, the spectral variation captured by the
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first two components (85% of the variance) reveals some of the characteristic features of

lactate, but also many other bands that are not related to it.

For developing a PLS regression model, preprocessed spectra of 32 samples have been

used, 24 for training and 8 for testing. The prediction, when tested with unknown samples,

demonstrates again the quality of the model with an RMSEP of 1.25mM and R2= 0.96, as

shown in Figure 6b. Two main messages can be drawn from the regression coefficients of the

predictive model in Figure S6b: first, most of the spectral variation present in the data is in

accordance with different concentrations of lactate, since most of its characteristic Raman

bands are identified; and second, this spectral variation is not only due to lactate since other

Raman bands, which are not associated with lactate, are also contributing to the model.

To study where these contributions are coming from, a gold standard method, based on

electrochemical analysis, has been used to take a reference measurement of the main param-

eters commonly measured in clinical settings (i-STAT, Abbott Technologies). The values of

four blood samples with different concentrations of lactate at two time intervals are displayed

in Table 1. As expected, the concentration of lactate changes from sample to sample, but it

can also be observed that many of these parameters are changing with time, meaning that

sample preparation and therefore exposure of the samples to air is extremely determinant.

Furthermore, Lemler et al.32 already mentioned that hemoglobin experiences some chemical

changes as soon as blood is extracted. Considering the fact that sample preparation was

performed by groups at different times, the variation of the different parameters shown in

Table 1 could explain the unexpected contributions present in the model (Figure 6b, Figure

S6b). Moreover, it has been demonstrated that prolonged exposure to laser and high incident

power are responsible for hemoglobin denaturation and heme aggregates.32 This unwanted

effect might hinder possible correlations induced by the addition of lactate.
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Table 1: Clinical parameters, measured with i-STAT (Abbott Technologies), from pig blood with
varying concentrations of lactate at two different periods of time.

Clinical Sample 1 Sample 2 Sample 3 Sample 4
parameters t1 t2 t1 t2 t1 t2 t1 t2

pH 6.92 7.02 6.99 7.06 6.98 7.08 6.99 7.06
pCO2 (mmHg) 125 95 103 84 101 76 95 79
pO2 (mmHg) 175 186 178 166 150 157 133 145
BE (mM) -7 -6 -7 -7 -8 -7 -8 -8
HCO2 (mM) 25.6 24.7 24.4 23.5 23.8 22.6 23.0 22.7
TCO2 29 27 27 26 27 25 26 25
sO2 (%) 98 99 98 98 97 98 96 98
Lactate (mM) 1.78 2.07 7.51 7.68 13.08 13.42 18.67 18.98

Figure 7: Multivariate analysis of preprocessed spectra from pig blood plasma with varying con-
centrations of lactate in the range of 2 - 18mM. (A) PCA score plot for the first three principal
components, (B) prediction of the PLS regression model with an optimum number of latent vectors
of N = 5; RMSEP and R2 defined as in Figure 2.

Lactate monitoring in blood plasma

To minimize the effect induced by sample preparation, blood cells had been removed and the

experiment was repeated in plasma samples. Visual inspection of PCA reveals that plasma

spectra still form clusters according to their concentration of lactate (Figure 7a) and that

lactate Raman features are still captured by the first two components, which is reflected in

the loading plot in Figure S7a.

However, labelling the data and developing a PLS regression model, a more robust and

accurate model is obtained. In comparison with blood samples, the prediction error has been

reduced to a value of RMSEP= 0.51mM (Figure 7b), which demonstrates a much stronger

contribution of lactate (Figure S7b).
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Evaluation of predictive models

PLS regression models have been implemented and used for evaluating the predictive power of

pH and lactate in aqueous solutions and body fluids by Raman spectroscopy. Quantification

errors are summarized in Table 2. It has been shown that data preprocessing plays a crucial

role in the development of models with good performance. The capability of our method

for sensing lactate and pH variations has been demonstrated by this study. Moreover, it

has been shown that blood, especially hemoglobin, is extremely sensitive to measurement

conditions, such as exposure to air or the power of the laser, which introduce uncontrolled

additional variability to the predictive model that should be considered.

Table 2: Prediction errors of pH and lactate in aqueous solutions and body fluids.

PBS/Water Blood Plasma
pH 0.04 0.05 -
Lactate (mM) 0.32 1.25 0.51

Conclusions

The present study has demonstrated that the combination of Raman spectroscopy with ma-

chine learning represents a suitable tool for monitoring lactate and pH values from body

fluids. PCA has proved clear discrimination of the spectra as a function of the pH value and

concentration of lactate. For future clinical applications, this constitutes a powerful tool for

both binary and multiclass classification in a variety of fields, such as fatigue analysis, sepsis

classification or identification of a hypoxia state. In addition, PLS predictive models have

been successfully tested with unknown samples, providing clinically promising errors that

verify the reliability, the accuracy and hence, the quality of our models. In conclusion, we

have verified a method for the development of a new, non-invasive and real-time technology

that could be used for continuous monitoring in vivo of pH and lactate related clinical

diagnostics.
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