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Abstract 

This work demonstrates a novel strategy to improve the sensing performance of a prism-

coupled surface plasmon resonance system by Gaussian beam shaping and multivariate 

data analysis. The propagation of the beam along the optical system has been studied 

using the Gaussian beam approximation to design the incident beam such that the beam 

waist is aligned precisely, and that stability is assured at the metal-dielectric interface. 

This renders a collimated incident beam, hence least angular dispersion, yielding a 

stronger and sharper plasmonic resonance. Moreover, we use the multivariate analysis 

method Partial Least Squares that combines multiple features of the surface plasmon 

resonance curve and allows for a more precise analysis of the plasmonic response. 

Compared to univariate analysis, partial least squares improves typical sensing 

performance parameters remarkably. The combination of both aspects, beam shaping 

and multivariate analysis, overcomes current limitations of plasmonic detection systems. 

Thereby, we improve analytical sensitivity by a factor of 16; decrease the prediction error 

of the concentration of an unknown analyte by a factor of 11; and enhance resolution to 

the order of 5 x 10-7 RIU in angular interrogation. 

 



INTRODUCTION 

Surface plasmon resonance (SPR) systems represent highly sensitive bioanalysis 

techniques for label-free detection of molecules in real-time 1, 2. The working principle is 

based on light-metal interaction at metal-dielectric interfaces that creates charge density 

oscillations called surface plasmon polaritons (SPPs). These SPPs are highly sensitive 

to refractive index (RI) changes close to the sensing surface 3. The most frequent 

configuration in SPR systems is the Kretschmann configuration, Figure 1a. It employs a 

coupling-prism to fulfill the resonance condition, causing a sharp decrease in the reflected 

beam intensity, as shown in Figure 1b., which is highly sensitive with respect to the RI of 

the surrounding medium. Thereby, any change in the RI due to the sample at close 

proximity to the metal surface induces a detectable change in the behavior of the reflected 

light, associated with plasmon-related features (angle, wavelength, phase) 4, 5. In 

commercial biosensors a single parameter is usually monitored in the SPR sensograms, 

for example the incident angle at minimum reflectance as a function of time. However, 

some examples of multi-parametric surface plasmon resonance detection have been 

reported, for instance with the goal of characterizing biomolecular layers in more detail 

for determination of layer thicknesses, refractive indices and surface mass densities in 

addition to traditional binding kinetics analysis 6. In this case, several parameters were 

monitored in real-time, such as the angle for total internal reflection, the angular position 

of the resonance condition, the half-width of the SPR peak and the change in the main 

SPR peak intensity at resonance. Similarly, the commercial BioNavis instruments employ 

multi-parametric SPR to provide a technology that features a single measurement 

channel, thus eliminating the need for any reference channel. As a result, clean 



sensograms without bulk artifacts can be obtained, and nanolayer thicknesses, refractive 

indices and nanoparticle properties can be measured. 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic representation of the working principle of an SPR system. (a) SPR system in Kretschmann 

configuration with cylindrical prism. (b) Involvement of the incident beam profile in the plasmonic response of a 

Kretschmann configuration with angular interrogation. An incident beam that is not aligned (shaped) and shows 

angular dispersion at the metal-dielectric interface, yields broader plasmonic resonance and decreased resonance 

strength. 

Many sensing applications call for enhanced sensitivity, better resolution, and lower 

detection limits. For instance, big efforts have been put into nanoscale engineered 

metasurfaces 7-9, leading to real-time and label-free nanoplasmonic biosensors for point-
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of-care device development 10-13. Other approaches propose the use of 2D materials to 

enhance the sensitivity of the plasmonic metasurfaces 14-16. In the case of purely 

propagating plasmons at flat metal surfaces, the sensitivity cannot be enhanced beyond 

a certain limit, due to the limitations imposed by light-matter interactions. Generally, when 

designing an SPR system, a plane incident wave is assumed 17, 18. In practice, even highly 

collimated laser sources have a propagating laser beam that occurs in the form of a 

Gaussian beam and present angular dispersion, which strongly depends on the 

characteristics of the light source used 19. Moreover, in SPR systems the incident beam 

is usually focused to a very small spot to increase the electric field intensity and improve 

signal-to-noise ratio 20. Consequently, a short Rayleigh range of the Gaussian beam is 

achieved and it is technically very difficult to place the beam waist directly at the interface, 

resulting in a dispersion of incident angles. Unlike the response of an ideal plane wave, 

the plasmonic resonance becomes broader and shows decreased resonance strength, 

which diminishes the resolution of the measurement 20, as schematically shown in Figure 

1b. Gaussian beam shaping can be done by simple refractive components or by more 

sophisticated methods to achieve the requirements for the wave characteristics defined 

by the experiment or application 21. 

The profile and the propagation of the beam through an optical system can be described 

by the Gaussian beam approximation 22, 23 by 
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where q is a complex parameter that combines the position and width of the beam, z is 

the propagation axis, λ the wavelength, and R(z) and W(z) are the radius of curvature 

and the half width of the beam at position z, respectively. W(z) is expressed by 

 𝑊(𝑧) = 𝑤+)1 + ,"($%&'))	+'
! -

,
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with w0 being the half width of the beam at the beam waist, at position z = d0. 

In this context, this work demonstrates the optimization of the plasmonic response by 

shaping and placing the beam waist exactly at the metal-dielectric interface, which is 

expected to provide stronger plasmonic performance. The design of the optical system is 

analytically calculated, and numerically optimized, using Gaussian ray tracing. Thereby, 

the Gaussian beam approximation model is resolved for a customized SPR system built 

in Kretschmann configuration, where the position and the refractive power of all beam 

shaping components is considered. In addition, analytical calculations are complemented 

by optical ray tracing using OpticStudio®-Professional-SUL from Zemax. The optimum 

solution is experimentally verified in the customized SPR system, featuring a semi-

cylindrical prism and a beam shaping lens. This optimized configuration is validated by 

the performance of the SPR system via univariate analysis (UVA) for RI changes using 

sucrose solutions as analyte at different concentrations. The same characterization 

procedure is carried out for the SPR system without the beam shaping to determine the 

enhancement in SPR performance due to Gaussian beam shaping. Additionally, instead 

of conventional univariate methods that solely measure the shift of the resonance angle, 

multivariate data processing is employed to further analyze the results obtained for both 



systems, with and without beam shaping. Multivariate analysis (MVA) collects more 

information from the SPR curve by combining multiple characteristic features, resulting in 

more precise analysis and better performance in terms of analytical sensitivity and 

prediction errors. 

MATERIAL AND METHODS 

SPR biosensing system and measurements 

A customized SPR system is built in Kretschmann configuration using a semi-cylindrical 

coupling-prism for angle interrogation, as shown in Figure S7a 24. The system consists of 

a p-polarized monochromatic He-Ne laser source (λ = 632.8 nm, HRS015B, Thorlabs, 

USA), a Faraday rotator (IO-2D-633-VLP, Thorlabs), a beam shaping refractive 

component (LB 1904 bi-convex lens, Thorlabs), a beam splitter for a reference signal and 

SPR detector (CCM1-BS013/M, Thorlabs), and a semi-cylindrical coupling-prism (Schott 

N-SF57, nSF57 = 1.8395 at λ = 633 nm, Crysmit Photonics, China) that is housed on a 

rotating platform (M-060.DG DC, PI miCos, Spain). The rotating platform is mounted 

together with a prism-holder to ensure a completely centered and reproducible placing of 

the coupling-prism. Additionally, a second rotating platform (OSMS-60YAW, OptoSigma, 

France) is used for the photodetector (PDA100A-EC, Thorlabs) to allow independent 

motion of the prism and the detector. The two rotating platforms are built on three linear 

translational stages (PLS-85, Pi miCos), which allows for alignment of the coupling-prism 

with the optical path and especially for fine-tuning the distance between the beam shaping 

lens and the coupling-prism. 



A special holder is fabricated by 3D printing (see Figure S5) to attach a plasmonic device 

on the customized SPR system. The plasmonic biosensor is fabricated by direct physical 

vapor deposition of 50 nm thin film of Au on top of a 170 µm BK7 glass substrate. Prior 

to the deposition process, the BK7 substrate is cleaned in an ultrasonic bath using 

Acetone and Isopropanol as solvents, 5 minutes each, and rinsing with water. 

Subsequently, the metallized plasmonic transducer is integrated into a microfluidic 

chamber, which is manufactured by lamination of polymer layers using an origami-based 

self-alignment method 25. A microfluidic chamber is structured in a double-side adhesive 

polymer layer (ARseal 8939, Adhesive Research, Ireland), which is designed using 

AutoCAD design software and cut with a cutting plotter (Silhouette portrait 2, Silhouette, 

Spain). The microfluidic chamber is sealed with a transparent polymethylmethacrylate 

layer (ME303016, Goodfellow, Spain) containing the inlet and outlet ports that are 

connected to mini-luer connectors and tubings (Microfluidic Chipshop, Germany). The 

connectors are integrated using ARseal 8939 O-rings of the same internal and external 

diameters. Figure S6 describes the manufacturing process used for the integration of the 

SPR transducer. To facilitate sample injection, fluid control and operation, a programable 

syringe pump is installed together with the optomechanical SPR system, as shown in 

Figure S7. 

Beam shaping calculations 

Figure 2 illustrates a representation of the beam propagation through various optical 

elements, such that the beam shows minimum angular dispersion at the metal-dielectric 

interface. The beam propagates from a virtual beam waist inside the laser, determined by 



beam profiling, until the metal layer in which the plasmons are produced. Along this optical 

path, the beam experiences six propagations di in free space or in a medium of constant 

refractive index and is transformed at five curved, flat and tilted refractive interfaces. 

 

 

Figure 2: Schematic representation of Gaussian beam propagation along each refractive interface of the optical 

system.  

The propagation of the Gaussian beam through the whole optical setup is done 

analytically by ray tracing analysis. The system is designed such that the final Gaussian 

at the metal surface fulfills 
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for least angular dispersion as shown in Figure 2, with W(z) from Eq. (2), and it is resolved 

by transforming the complex q parameter from Eq. (1) (for further information about 

Gaussian beam propagation calculations see the supporting information). 

An optical and illumination design software (OpticStudio™ 16.5, Zemax, UK) is used to 

design the optical system described in Figure 2. The optimization is done to find the 



minimum value of the GBPP merit of function (Gaussian beam paraxial position), which 

resolves the system by placing the beam waist at the interface between the glass and the 

Au layer, with the distance d2 as varying parameter. For optimized beam shaping it is 

indispensable to precisely characterize the original Gaussian laser beam. The half waist 

and its position, w0 and d0, are obtained by a highly precise beam profiling and fitting the 

data to the Gaussian beam intensity curve described in Eq. (2) (for further information 

about beam profiling see the supporting information). 

Beam shaping experimental verification 

The customized SPR system is built according to analytical and simulation results that 

lead to an optimized design. The verification of the system is done by several SPR 

measurements at varying distance d2 with air as sample behind the Au layer. A motorized 

translational stage moves the semi-cylindrical prism along the optical axis to change the 

distance d2. For the optimization, a variety of parameters of the SPR curve are analyzed, 

as shown in Figure 3, such as the maximum extinction A, the steepest negative slope 

Smin before the resonance condition, the curvature k at resonance and the half width of 

the curve ∆θSPR-Smin between θSmin and θSPR, also called half width at slope minimum, 

HWSM. 



 

Figure 3: Characteristic parameters of a typical SPR curve in Kretschmann configuration 24: Maximum extinction A, 

steepest slope Smin, angle at steepest slope θSmin, resonance angle θSPR, curvature at resonance k, and angular 

distance between steepest slope and resonance ∆θSPR-Smin. 

MATLAB (by MathWorks) is used for the analysis of the features, using precise local 

polynomial fits of the SPR curve around each parameter of interest to avoid noise artifacts 

and adverse smoothing effects. 

Characterization of the optimized SPR system 

Univariate analysis 

Analytical figures of merit (AFOMs) such as sensitivity (SEN), analytical sensitivity (g), 

Root Mean Square Error of Cross Validation (RMSECV), Root Mean Square Error of 

Prediction (RMSEP) and minimum detectable RI change or resolution (rSensor) are used 

to compare the performance of the optimized SPR system with beam shaping and the 

standard system without beam shaping. The systems are characterized by using UVA for 

each of the defined features of the SPR curves (A, Smin, θSmin, θSPR, k and ∆θSPR-Smin) and 

calculating each figure of merit. 



The calibration curves for the two SPR systems, with and without beam shaping, are built 

by measuring the SPR curves for five aqueous sucrose solutions, based on DI water, with 

different RI, due to increasing sucrose concentrations from 0% to 10%. The RIs of the 

sucrose solutions are measured using a commercial refractometer (Digital refractometer 

PCE-DRH1 series, PCE Instruments; Alicante, Spain), and RI values of 1.333, 1.3359, 

1.3403, 1.3446 and 1.3475 are obtained for sucrose concentrations of 0%, 2%, 5%, 8% 

and 10%, respectively. The SPR curves are measured by angle interrogation between 

46⁰ - 53⁰ with a sampling of 0.05⁰. Twenty measurements are carried out for each 

concentration and system design. 

SEN of each SPR feature is calculated as the slope of the univariate calibration curve; 

RMSECV is estimated by Monte Carlo cross-validation, which performs 10 cycles with 

70% of samples retained for calibration; RMSEP and resolution values for UVA are 

estimated using 

 RMSEP = )∑ (/,01,)!-
,./

2
, (4) 
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with Pi and Oi as the predicted and original value of the sucrose concentration and σ>?@=A 

as the standard noise deviation of several blanks. 

Finally, the analytical sensitivity g is defined as the ratio between sensitivity and 

instrumental noise sx, given by 



 γ = 	 3<=
;5

. (6) 

For simplicity, sx can be assessed from the residual matrix 26, as the difference between 

the predicted value P from the univariate calibration model and the original value O, where 

in this case P and O refer to the value of the RI. Similarly, in this particular case, g is 

estimated as in 27. 

Since the characteristic SPR features Y, which are A, Smin, θSmin, θSPR, k and ∆θSPR-Smin, 

have different units and different magnitudes, relative changes of Y are analyzed by firstly 

centering each feature via subtraction of the average value and secondly dividing by the 

maximum value, (Yi-Ymean)/Ymax, with Yi as the value of the characteristic feature of an 

SPR curve at a sample concentration of i%. 

Multivariate analysis 

MVA is used to combine multiple features of the SPR curves, thereby gaining more 

information. By optimizing linear combinations of many characteristic features or 

variables, the performance in data analysis can be strongly improved compared to UVA. 

Among many existing multivariate analysis methods, partial least squares (PLS) is one of 

the most commonly used first-order calibration methods for the prediction of operational 

conditions (e.g. concentrations in chemometrics), which is a dimensionality reduction 

technique used for regression modeling 26. Data is projected in a new subspace of latent 

variables which are linear combinations of original features from the SPR curves. 

Covariance between these new variables and RI conditions is maximized, such that the 

RMSECV and RMSEP are optimized. The multivariate calibration curves are built 



similarly to the univariate method but using pseudo-univariate calibration curves based 

on the net analyte signal (NAS), which is defined as the part of the multivariate signal that 

the model relates to the predicted sample condition (e.g. RI or sucrose concentration). 

NAS is designated as r* and can be calculated as follows 28: 

 𝐫∗ = 𝑐𝐛 ‖𝐛‖,⁄ , (7) 

where c indicates the predicted or observed values for the samples, and b is a vector 

containing the regression coefficients of the individual features, hence giving information 

about the relevance of individual variables. For inverse methods, such as PLS, a pseudo-

univariate calibration model can be represented as reference analyte condition cref (e.g. 

original RI value) versus ‖𝐫∗‖, with a least-squares fitted calibration curve 

 𝑐84C = 𝑏‖𝐫∗‖, (8) 

where b is the slope, called the inverse sensitivity that represents 𝑏 = 1 ‖𝐬∗‖⁄ , with ‖𝐬∗‖ 

as the sensitivity of the method. Accordingly, for the PLS model, SEN can be calculated 

as 

 SEN = !
‖𝐛617‖

, (9) 

where ‖𝐛F?3‖ is the Euclidean norm of the PLS regression coefficients. 

In the present case, the multivariate calibration model is built in MATLAB using Monte 

Carlo cross-validation, which performs 10 cycles with 70% of samples retained for 

calibration, and the optimum number of latent variables for prediction are calculated using 

the Haaland and Thomas criterion 29. For each data set, the normalization to unity is done 



using the mean normalization for each feature Y, which is (Yi-Ymean)/(Ymax-Ymin), with Yi 

the value at concentration i%, Ymean the average value and Ymax and Ymin the maximum 

and minimum values of the specific feature. The SENs of the multivariate models for both 

systems, with and without beam shaping, are calculated from the pseudo-univariate 

calibration curves, as well as using Eq. (9). The RMSEP and the resolution values are 

calculated as for the univariate case. 

RESULTS AND DISCUSSION 

Simulations and analytical calculations for beam shaping 

For the optimized SPR system a positive symmetric lens with a focal length of f = 125 mm 

is placed at d1 = 310 mm, considering the dimensional restrictions for the assembly of the 

optomechanical system (Figure S7). The characteristics of the laser source are derived 

from beam profiling, with w0 = (0.27752 ± 0.0009) mm and d0 = (- 46.81 ± 3.7) mm. The 

optimum design dimensions for both analytical and Zemax calculations is found at 

d2 = (178.07 ± 0.38) mm, the error results from Gaussian error propagation considering 

the uncertainty from beam profiling of the original Gaussian laser beam. The final half 

beam waist of the Gaussian at the metal-dielectric interface is Wf = (125 ± 0.8) µm, with 

the corresponding Rayleigh range of zf = (77.56 ± 0.96) mm, yielding stable operational 

conditions. 

Experimental verification of optimized design 

To verify the analytical and simulation results, four characteristic parameters of the SPR 

curve are analyzed: A, Smin, k, and ∆θSPR-Smin (see Figure 3). Figure 4 shows the variation 



of these four characteristic parameters as a function of the distance d2 between the beam 

shaping lens and the coupling-prism, showing clear extrema around the Rayleigh range. 

All measurements were conducted three times using air as dielectric medium. Table 1 

gathers values for d2 at which the individual parameters are optimized according to the 

position of the maximum or minimum (extremum) of each feature. The extrema indicate 

the position for strongest measurable SPR response and are empirically fitted by 2nd order 

polynomials. The feature Smin (steepest negative slope) shows a minimum for 

d2 = 178.1 mm, which is in perfect agreement with the theoretical predictions. The other 

parameters show clear extrema as well, indicating an optimally shaped beam at the 

metal-dielectric interface, however, at slightly higher values of d2. The corresponding d2 

values of all extrema are averaged and the error is calculated by Gaussian error 

propagation, obtaining d2 = (182.5 ± 3.7) mm. These deviations can be explained by 

systematic measurement errors of geometrical distances in the setup, by interference 

effects impairing the resonance curve at high angles and the uncertainty of the fitted 

measurements. Considering all these errors, the experimentally optimized 

optomechanical configuration is in good agreement with the analytical and simulated 

calculations. Further measurements with liquid samples of varying RI were taken with the 

optimized SPR configuration, considering d1 = 310 mm and d2 = 182.5 mm as mentioned 

above. 



 

Figure 4: Experimental results for the design optimization of the SPR system by Gaussian beam shaping. SPR curves 

are measured three times using air as dielectric medium while varying the distance d2 between the beam shaping 

lens and the prism (see Figure 2). The variations of the analyzed characteristic features A, Smin, k and ∆θSPR-Smin 

show clear extrema around the Rayleigh range. 

Table 1: Experimental results for the SPR system design optimization by Gaussian beam shaping. Optimized d2 

values are calculated from the extrema of each feature, derived from the feature variation curves while varying d2 

(see Figure 4). The measurements are repeated three times for each feature and the error of the averaged d2 values 

is calculated by Gaussian error propagation. Considering systematic errors of ± 3.7 mm for distance measuring 

through the whole optomechanical system, experimental and theoretical design results are in agreement. 

New beam 
position 

Experimental verification Theoretical 
design A Smin k ∆θSPR-Smin Average  

d2 (mm) 183.8 178.1 184.0 184 182.5 178.07 

∆d2 (mm) 1.4 1.8 4.5 14 3.7 0.38 

 



Characterization of the optimized SPR system 

SPR measurements 

The SPR system is tested, with and without beam shaping, in order to characterize the 

performance of both SPR configurations in measuring variations in RI, realized by 

changing concentrations of sucrose solution (see Figure 5). The SPR curves reflect 

stronger and sharper resonance for an optimally shaped incident Gaussian beam. Beam 

shaping leads to a higher maximum extinction A, hence steeper slope Smin, a narrower 

resonance reflected in the half width ∆θSPR-Smin of the resonance curve, and a stronger 

curvature k at resonance. For the resonance angle, the system without beam shaping 

shows slightly shifted resonance conditions with higher values for θSPR and θSmin, which 

can be explained by the asymmetric shape of the resonance dip and non-linear angular 

dispersion of the beam. However, angular shifts due to RI variations result in similar 

behavior for both systems, leading to higher SPR angles for increased RI of the dielectric 

medium. At higher RI, resonance curves become flatter, featuring decreased maximum 

extinctions A, and likewise weakened parameters Smin, k, and ∆θSPR-Smin. 

 



Figure 5: SPR curves for DI water and different solutions of increasing Ris, realized by water-based sucrose solutions 

of increasing concentration. The SPR curves are measured with (▪) and without (-) Gaussian beam shaping, and the 

measurements are repeated 20 times for each RI condition. 

From these SPR curves, the calibration curves for UVA and MVA are generated for the 

characteristic features A, Smin, θSmin, θSPR, k and ∆θSPR-Smin, which are calculated as input 

for the determination of several figures of merit (see supporting information for further 

details on univariate and multivariate calibration models). 

Analytical figures of merit (AFOMs): univariate and multivariate analysis 

The analysis of the SPR performance for both systems, with and without beam shaping, 

builds upon analytical figures of merit (AFOMs) such as the sensitivity (SEN), the 

analytical sensitivity (g), the root mean square error of cross validation (RMSECV), the 

root mean square error of prediction (RMSEP) and the minimum detectable RI change 

(resolution). All these AFOMs calculated for the univariate and PLS multivariate 

calibration models as well as the statistical and prediction analysis for the PLS model for 

both systems, with and without beam shaping, are summarized in Table 2 and Table 3 

and illustrated in Figure 6 and Figure 7. 

Figure 6 shows the sensor sensitivity for the two system configurations, with and without 

beam shaping, when using UVA and MVA. SEN is defined as the ratio of the sensor signal 

variation to the change of RI. Figure 6a illustrates SEN values of six independent sensor 

signals obtained from UVA, measured as SPR curve features A, Smin, θSmin, θSPR, k and 

∆θSPR-Smin. The parameters that show the greatest relative change, in descending order, 

are the SPR curvature k, the half-width ∆θSPR-Smin, the steepest slope Smin, and the 



maximum extinction A, followed by the angular shifts (θSPR and θSmin) that show a 

noticeable lower relative change. The SEN values obtained from MVA, illustrated in 

Figure 6b, give evidence for strongly enhanced performance when the beam is shaped. 

The same trend is generally observed in UVA (see Table 2). MVA normally uses 

normalization procedures (e.g. mean normalization) to achieve dimensionless and scaled 

parameters and combines all the normalized signals such that the covariance with respect 

to RI is maximized. In the case of UVA, these normalizations cannot be used to evaluate 

and compare the relative changes of the features as independent sensor signals. 

Therefore, in UVA mean-max normalization is used to avoid the scaling of the sensing 

parameters to a fixed range (e.g. a commonly used range between 0 and 1) and thus 

represents the relative change of each parameter with respect to RI variations. In all cases 

the sensitivity SEN is given as a normalized quantity with respect to changes in refractive 

index (RIU: refractive index unit). 

 

Figure 6: Sensitivity values for the SPR systems, with and without beam shaping, using UVA and MVA. (a) SEN 

values calculated from the normalized univariate calibration curves based on the characteristic features A, Smin, θSmin, 

θSPR, k and ∆θSPR-Smin. SEN is calculated as the slope of the calibration curves of mean-max normalized data. (b) 

SEN values calculated from the multivariate PLS calibration model based on the mean normalized characteristic 

a b 



features A, Smin, θSmin, θSPR, k and ∆θSPR-Smin. SEN is calculated as the inverse of the Euclidean norm of the PLS 

regression coefficients, as well as the inverse of the slope obtained for the pseudo-univariate calibration curve. 

When comparing the performance of different sensing signals, it is of utmost importance 

to use figures of merit that are independent of signal units and magnitudes. In this case, 

due to the different normalization procedures used for UVA and MVA methods, the 

parameters are scaled differently. Therefore, SEN cannot be used to compare the SPR 

performance of the single features, used as standalone sensing techniques in UVA, with 

the combined features, used as multiarray sensor in MVA. Nonetheless, it is possible to 

compare UVA against MVA using the analytical sensitivity (g) as a better indicator for 

comparison purposes 26, as well as the root mean square error of prediction (RMSEP) and 

the minimum detectable RI change (resolution). The analytical sensitivity g, which takes 

into account the sensitivity and the uncertainty of the data, again shows strong 

improvement using MVA. 15- and 4-fold enhancement is achieved when the best 

performance parameter of UVA is considered for the systems with and without beam 

shaping, respectively (see Figure 7.a, Table 2 and Table 3). The RMSEP values obtained 

from UVA indicate that the features with highest SEN are at the same time the parameters 

that lead to the greatest errors in prediction (see Figure 7.b and Table 2). For instance, for 

the optimized SPR system with beam shaping, Smin, k and ∆θSPR-Smin lead to especially 

high prediction errors, whereas A, θSmin and θSPR deliver much lower errors. For assessing 

performance, it is necessary to find a trade-off between SEN and RMSEP for choosing the 

best sensing parameters in UVA, such that high precision and high accuracy are achieved. 

This compromise can be guaranteed by g as figure of merit. In general, higher g values 

correspond to more sensitive and accurate sensing parameters with high SEN and low 



RMSEP. For the optimized SPR system with beam shaping, the features with the highest 

analytical sensitivity are, in decreasing order, θSmin, θSPR and A, with considerable higher 

g values, followed by k, Smin and ∆θSPR-Smin.  

 

Figure 7: Figures of merit obtained from UVA and MVA calibration models for the SPR systems with and without beam 

shaping. UVA is based on different prediction parameters as characteristic features (A, Smin, θSmin, θSPR, k and ∆θSPR-

Smin), while MVA combines the information of all parameters for better prediction. (a) Analytical Sensitivity, g. (b) 

RMSEP. (c) Resolution. (d) Normalized regression coefficients estimated by PLS. The coefficients shown are 

absolute values (some of the parameters are negative), original values of the regression coefficients are depicted in 

Figure S4. 



The regression coefficients for MVA are shown in Figure 7d and Figure S4, which 

represent the contribution (or relevance) of each feature in PLS multivariate calibration 

model. As expected, a similar result as for g is observed for the contributions of each 

parameter in the PLS multivariate calibration model. For the optimized SPR system with 

beam shaping, the regression coefficients show highest weight factors for θSmin and θSPR, 

followed by ∆θSPR-Smin, A, Smin, and k, which demonstrates good agreement between g 

and regression coefficients. Consequently, it is demonstrated that g represents a suitable 

alternative AFOM to estimate the best performing parameters in UVA, as previously 

stated by Silva et al. 27, while MVA allows a deeper analysis by simultaneously 

considering various independent variables. Regression coefficients identify the relevance 

of each parameter in the multivariate model, by unveiling existing correlations between 

RI conditions and the variability of different SPR parameters. 

Finally, resolution values obtained from UVA show the best performance for θSPR and A, 

as shown in Figure 7c. Furthermore, the resolution enhancement due to the Gaussian 

beam shaping is around 35% for the θSPR parameter (see Table 2). When comparing the 

developed systems with other systems found in literature, most of the reported detection 

resolutions for the SPR systems in angular interrogation are based solely on the 

resonance angle, and not using multiple parameters 30. Additionally, it is highly important 

to make sure that the figures of merit are similarly defined. Sensor sensitivity can be 

expressed in different units depending on the measured signal or parameter (angle, 

wavelength, intensity, phase shift or other SPR-related parameters); moreover, different 

definitions for resolution can be found, even when the sensor resolution is always 

measured with the same unit, which is in this case RIU. For example, according to the 



definition by Chung et al. 31, our two SPR systems, with and without beam shaping, 

present a resolution very similar to some home-made SPR systems 32-34 or the portable 

CORgi IIF SPR instrument from Plasmetrix. However, the definition by Chung et al. does 

not consider the standard noise deviation, thus not allowing for comparison of sensitivities 

and resolutions with commercial systems. Considering Eq. (5), our optimized system 

shows a resolution of 5.75 x 10-7 RIU, which demonstrates high performance and 

enhanced resolution due to Gaussian beam shaping and multivariate data analysis. 

Therefore, it offers higher resolution ranges than most portable SPR sensors and 

commercial SPR systems that are based on angular interrogation 30, 35, 36. 

Table 2: Analytical figures of merit (AFOMs) estimated for both SPR systems, with and without beam shaping, and 

obtained from UVA calibration model. The measured sensor signals for building the AFOMs are the characteristic 

features A, Smin, θSmin, θSPR, k and ∆θSPR-Smin, obtained from the SPR curves. 

SPR system  

configuration 

Evaluation 
parameters 

AFOMs 

SEN (RIU-1) 
RMSECV 

(RIU) 

RMSEP  

(RIU) 

rSensor 

(RIU) 

g  

(RIU-2) 
mean-

max norm 

mean 

norm 

Optimized 
system: 

Shaped beam 

A 7.46 89.25 6.08E-04 6.05E-04 4.17E-05 1.47E+05 

Smin 15.26 98.85 2.10E-03 2.20E-03 3.75E-04 4.49E+04 

θSmin 0.88 84.12 4.13E-04 3.88E-04 1.23E-04 2.17E+05 

θSPR 1.15 83.85 4.26E-04 4.37E-04 4.00E-05 1.92E+05 

k 44.92 97.51 1.60E-03 1.60E-03 1.72E-04 6.09E+04 

∆θSPR-Smin 18.74 104.7 2.40E-03 2.50E-03 4.07E-04 4.19E+04 

Standard 
system: 

No beam 
shaping 

A 5.05 83.13 1.10E-03 1.10E-03 3.25E-04 7.56E+04 

Smin 15.93 94.50 1.70E-03 1.60E-03 5.39E-04 5.91E+04 

θSmin 0.97 81.95 6.95E-04 7.54E-04 4.85E-04 1.09E+05 

θSPR 1.23 84.77 4.12E-04 4.22E-04 5.38E-05 2.01E+05 

k 29.17 90.48 1.70E-03 1.70E-03 4.48E-04 5.32E+04 

∆θSPR-Smin 17.78 83.35 1.40E-03 1.60E-03 1.70E-03 5.21E+04 

 



Table 3: Summary of the statistical cross-validated calibration results, AFOMs and regression coefficients for both 

SPR systems, with and without beam shaping, obtained from a multivariate PLS inverse calibration model. The 

sensor signal used for AFOMs generation is the combination of mean normalized characteristic features A, Smin, 

θSmin, θSPR, k and ∆θSPR-Smin, obtained from the SPR curves. 

Calibration results 
SPR system configuration 

Shaped 
beam 

No beam 
shaping 

RMSECV (RIU) 3.81E-05 8.35E-05 

Optimum nº of Latent 
Vectors 

4 5 

AFOMs 
SEN (RIU-1) 117.04 93.52 

RMSEP (RIU) 3.57E-05 1.06E-04 
rSensor (RIU) 5.75E-07 7.61E-07 

g (RIU-2) 3.28E+06 8.80E+05 

Regression coefficients 

A -0.0014 -0.0007 

Smin -0.0013 -0.0036 

θSmin 0.0062 0.0075 
θSPR 0.0052 0.0066 

k 0.0011 0.0003 

∆θSPR-Smin 0.0017 0.0014 

 

CONCLUSIONS 

Our results satisfactorily demonstrate that the optimization of the Gaussian beam 

propagation, such that the beam is shaped and aligned with least angular dispersion at 

the metal-dielectric interface, results in a sharper plasmonic resonance. As a result, three 

of the analyzed parameters from the SPR curve used as performance indicator features,  

In addition, the combination of multiple features of the SPR curve using PLS enables a 

more precise analysis of the characteristic performance under different sample 



conditions, resulting in an enhancement of the method. Therefore, combining the beam 

shaping with multivariate analysis we improve the performance of the SPR system, 

showing enhanced performance of three analytical figures of merit: analytical sensitivity, 

prediction error and resolution. Thereby, achieving enhanced resolution to the order of 

5 x 10-7 RIU in angular interrogation, we overcome current limitations for biodetection in 

plasmonic detection systems. 
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