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The electrostatics arising in ferroelectric/dielectric two-
dimensional heterostructures and superlattices is revisited
within a Kittel model in order to define and complete a clear
paradigmatic reference for domain formation. The screening
of the depolarizing field in isolated ferroelectric or polar thin
films via the formation of 180° domains is well understood,
where the width of the domains w grows as the square-root
of the film thickness d, following Kittel’s Law for thick
enough films (w≪ d). For thinner films, a minimum is reached
for w before diverging to a monodomain. Although this
behaviour is known to be qualitatively unaltered when the
dielectric environment of the film is modified, we consider
the quantitative changes in that behaviour induced on the
ferroelectric film by different dielectric settings: as deposited
on a dielectric substrate, sandwiched between dielectrics, and
in a superlattice of alternating ferroelectric/dielectric films.
The model assumes infinitely thin domain walls, and therefore
is not expected to be reliable for film thickness in the
nanometre scale. The polarization field P(r) does vary in space,
deviating from ±PS, following the depolarizing field in linear
response, but the model does not include a polarization-
gradient term as would appear in a Ginzburg–Landau free
energy. The model is, however, worth characterizing, both as
paradigmatic reference, and as applicable to not-so-thin films.
The correct renormalization of parameters is obtained for the
thick-film square-root behaviour in the mentioned settings, and
the sub-Kittel regime is fully characterized. New results are
presented alongside well-known ones for a comprehensive
description. Among the former, a natural separation between
strong and weak ferroelectric coupling in superlattices is found,
which depends exclusively on the dielectric anisotropy of the
ferroelectric layer.
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1. Introduction

The formation of ferromagnetic [1–4] and ferroelectric [5,6] domain structures in thin films is awell-known
phenomenon. Polydomain structures appear in ferroelectric thin films in order to screen the electric
depolarizing field arising at the interfaces between the surfaces of the thin film and its environment,
such as vacuum or a non-metallic substrate. The electrostatic description of a ferroelectric thin film in an
infinite vacuum has been studied in detail [6,7]. The equilibrium domain width w follows Kittel’s Law
versus film thickness d, w/ ffiffiffi

d
p

, when w≪ d. Within the same model but making no approximations
on the electrostatics arising from an ideal, regular polydomain structure, for w * d, w reaches a
minimum and grows again when decreasing d, until the monodomain is reached [6,7]. A similar effect
was first predicted and observed in ferromagnetic thin films [8–11]. This description of an isolated thin
film does not describe the effect that the surrounding environment has on the electrostatics of the thin
film and hence the domain structure, however.

It is now possible to fabricate ferromagnetic and ferroelectric samples by growing alternating layers
of different thin films, just a few unit cells in thickness, in a periodic array (superlattice) [12–14].
Alternating between ferroelectric and paraelectric layers (FE/PE superlattice, see figure 1), a great deal
of control over the superlattice’s properties can be achieved by changing the relative thicknesses of the
layers [15–18]. This has generated interest in the study of FE/PE superlattices from the theoretical
[19,20] and computational [21] perspectives.

The dependence of the domain structure on superlattice geometry cannot be described using the
theory of a thin film in an infinite vacuum, however. Some generalizations have appeared in the
literature which include the effects of surrounding materials [19,22–28]. For a free-standing thin film
on a substrate, it was claimed that the electrostatic description is the same as for a thin film of half the
thickness sandwiched between two paraelectric media [22]. This has been used to fit measurements of
ferroelectric domains [29,30], but a free-standing film on a substrate was never studied explicitly.

By placing a ferroelectric thin film together with a paraelectric layer between two short-circuited
capacitor plates, it was found that the domain structure could be controlled by tuning the properties
of the paraelectric layer, and the stability of the ferroelectric film could be improved [23–28]. This
system is to some extent equivalent to a FE/PE superlattice since the capacitor plates impose periodic
electrostatic boundary conditions.

A number of experimental and computational advances have revived interest in this problem.
Interesting effects can occur at interfaces between different materials such as the formation of a two-
dimensional electron gas (2DEG) at polar/non-polar interfaces like LaAlO3/SrTiO3 (LAO/STO)
[31,32]. It is thought that the 2DEG appears to screen the polar discontinuity at the LAO/STO
interface [33], and similarly, it has recently been proposed as a mechanism to screen the depolarizing
field at ferroelectric/paraelectric interfaces [34,35]. This is difficult to directly observe experimentally,
and evidence for 2DEG formation at FE/PE interfaces has only very recently been found [36–38]. This
is because there is competition with domain formation for the screening of the depolarizing field.
Since these phenomena are of an electrostatic origin, a clear picture of the electrostatics of
ferroelectrics is essential in order to understand them.

Although ferroelectric thin films have been frequently simulated from first principles in different settings
and environments [35,39–43], ferroelectric domains are quite demanding to simulate from first principles, as
they require much larger supercells. Recent developments in effective model building from first-principles
calculations (second-principles methods) make it possible to study very large systems, including large
domain structures in ferroelectric materials [44–52] and observe interesting related effects such as negative
capacitance [53] and polar skyrmions [54]. These scientific advances, both experimental and
computational, have motivated us to revisit the electrostatic description of ferroelectric domains.

The continuum electrostatic description of a monodomain ferroelectric thin film is essentially unaffected
by a dielectric environment of the film. This is because there is zero field outside the thin film and hence these
regionsmake no contributions to the electrostatic energy. For a polydomain ferroelectric thin film, the domain
structure introduces stray electric fields into the regions outside the film (figure 2). We expect different
behaviour if we replaced the vacuum regions with a dielectric medium. Understanding the effect of more
general geometries on the electrostatic description of ferroelectric thin films not only gives an insight into
how the surrounding dielectric media contribute to the screening of the depolarizing field, but also allows
us to understand the behaviour of the domain structure of the film in different environments, bringing us
closer to a realistic description of a thin film. Here, we present the results for a Kittel model for domains in
ferroelectric films and superlattices in different electrostatic settings. We present known results together
with new ones for a comprehensive, comparative description of the following situations:
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Figure 2. Geometry of a ferroelectric thin film of thickness d with a 180° polydomain structure. The red lines represent the
electrostatic depolarizing field, which bend around the interfaces and domain walls.
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Figure 1. Geometry of a FE/PE periodic superlattice. The unit cell is indicated by the dashed square. The thicknesses of the layers are
indicated on the right and W+ and W− are the widths of the positive and negative polarization domains. In polydomain limit, these
widths are equal: W+ = W− = w.
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First, we review the continuum model of an isolated film (IF) with the full treatment of the
electrostatics and a domain wall term. We then generalize the theory for three different systems: a thin
film on an infinite substrate (overlayer, OL), a thin film sandwiched between two infinite dielectric
media (sandwich, SW), and a FE/PE superlattice (SL). We keep the prevalent nomenclature in the
literature of referring to a spacer material such as STO as paraelectric, but the description will be
exclusively that of a dielectric material with a given isotropic dielectric permittivity.

All of these systems except the OL have appeared in the literature in various contexts and with
different levels of detail. We compare the different cases, first in the Kittel limit (w≪ d), for which
analytic expressions are obtained for w(d ), and also in the general situation. Previous studies of
periodic superlattices have assumed ferroelectric and paraelectric layers of equal width. Here, we
provide a more general study of domain structures as a function of superlattice geometry. We also
present a detailed derivation of the electrostatic energies in appendix A.
2. Review of model for a film in vacuum
The fundamental model used in this work is based on the following free energy per unit volume of a
ferroelectric thin film in a vacuum with a 180° stripe domain structure [1,5]

F ¼ F 0(P)þ S

w
þ F elec(w, d), (2:1)

where F 0(P), defined as

F 0(P) ¼ 1
210kc

1
4
P4

P2
S
� 1
2
P2

� �
(2:2)

is the bulk ferroelectric energy with spontaneous polarization PS and dielectric permittivity κc, which
describes the curvature about P = PS. Σ is the energy cost per unit area of creating a domain wall,
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F elec is the electrostatic energy associated with the depolarizing field, and w and d are the width of one

domain and thickness of the film, respectively.
In the Kittel model, instead of solving for P in equation (2.2), the total polarization field P(r) is taken to

deviate from the spontaneous polarization ±PS in linear response to the electric depolarizing field,
according to the dielectric susceptibilities normal and parallel to the film, κc and κa, respectively. This
model makes significant approximations about the form of P(r), such as neglecting domain-wall width and
surface/interface effects. Ferroelectric domain walls tend to be much thinner than ferromagnetic domain
walls, typically of order 1 nm. Realistic descriptions of nanometric films should rather resort to theories
with proper consideration of those effects, such as explicit first-principles calculations or Ginzburg–Landau
(e.g. [19,20,55]). There are situations, however, for which this model is relevant (in our case, this work was
prompted by situations as described in [34,56]), and, more generally, a clear account for the behaviour of
this simple model in the electrostatic settings considered represents a valuable paradigmatic reference.

Since we will be interested in the electrostatic effects due to a finite polarization, we will consider the
polarization to be PS, except for its modification in linear response to the depolarizing field implicit when
using a dielectric permittivity for the material normal to the field, κc. This assumption is equivalent to
replacing the form of F 0(P) in equation (2.2) by its harmonic expansion about one of the minima

F 0(P) ¼ 1
10kc

(P� PS)
2: (2:3)

The equilibrium domain structure for this system for a given thickness is obtained by minimizing the
energy: @wF ¼ 0.

As mentioned above, we consider an ideal domain structure made by regular straight stripes, all of
them of the same width w (in appendix A different widths are considered). For an IF, the electrostatic
energy for that structure is given by [6]

F elec ¼ 8P2
S

10p3

w
d

X
n odd

1
n3

1
1þ xkc coth ((np=2)x(d=w))

, (2:4)

where κa, κc are the dielectric permittivities in the directions parallel and normal to the film and
x ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ka=kc
p

is the dielectric anisotropy of the film. In the Kittel limit [1,5], w/d≪ 1, equation (2.4)
reduces to

FKittel
elec ¼ P2

S

210
b
w
d
, (2:5)

where

b ¼ 14z(3)
p3

1
1þ xkc

, (2:6)

and ζ(n) is the Riemann zeta function. An analytic expression is obtained for the equilibrium domain
width

w(d) ¼
ffiffiffiffiffiffi
lkd

p
, (2:7)

where

lk ¼ 210S
P2
Sb

(2:8)

is the Kittel length, which defines a characteristic length scale of the system. Equation (2.7) is known as
Kittel’s Law [1].

Beyond the Kittel regime, we can obtain the equilibrium domain width from the numerical solution
to equation (2.1) for the full electrostatic expression in equation (2.4). In figure 3, we plot the domain
width as a function of thickness both from the Kittel Law and equation (2.4) with numerical solutions,
truncated at n = 100 terms. We use PbTiO3 (PTO) and SrTiO3 (STO) as examples of ferroelectric and
paraelectric materials, respectively, in all of the plots in this paper, using suitable parameters.1 PTO
and STO are some of the most widely studied ferroelectric and paraelectric materials, respectively,
both experimentally and theoretically, particularly in the context of FE/PE superlattices. The
predictions of the model should be reliable in the Kittel regime, but other materials will better
conform to the approximations of this model for single sub-Kittel thin films. The model is suitable,
however, for strongly coupled PTO/STO superlattices, as for the situations described in [34,56].
1The following values of d were used: d1 = 2 nm, d2 = 1 nm, d3 = 0.4 nm, d4 = 0.105 nm, d5 = 0.1 nm, d6 = 0.99 nm, d6 = 0.9 nm. The values
of the parameters used are: PS = 0.78 C m−2, Σ = 0.13 J m−2, χη = 26, κa = 185, κc = 34, κs = 300.
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show the evolution of domain width with thickness (scaled by the Kittel length). In particular, dm is the thickness at which the
domain width is minimal and d∞ is the thickness at which the domain width diverges. The values of the parameters used are: PS =
0.78 C m−2, Σ = 0.13 J m−2, κa = 185, κc = 34, κs = 300.
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In figure 3, we see that the domain width follows Kittel’s Law at large values of d, but, for decreasing
d, w reaches a minimum at dm and then diverges at d∞. We can understand this behaviour by studying
the shape of the energy curves as a function of domain width and thickness, which is done in figure 4.
The energy per unit volume associated with creating the domain walls, shown in red, is unaffected by the
thickness of the film. The dashed grey lines show the electrostatic energy equation (2.4) at different
thicknesses. We can see in each case that for small w, the energy is approximately linear in w,
following Kittel’s Law (equation (2.5)). As w increases, Kittel’s Law breaks down, and the curves
begin to saturate to the monodomain electrostatic energy

Fmono ¼ P2
S

210kc
: (2:9)

As d decreases, the saturation of the electrostatic energy is realized earlier, and the minimum in total
energy becomes shallower, eventually disappearing, the equilibrium domain width thereby diverging.
We can visualize this by looking at the minima of the total energy curves as d is decreased. The
minima are marked with black dots on figure 4 and are also shown on the plot of w(d ) in figure 3.

The described deviation from Kittel’s Law is sensitive to the system’s parameters. In [7], an expression
for dm was reported2 of the form

dm ¼ 5pS10
kc
x

1
P2
S
, (2:10)

where such dependence is explicit.
In figure 5, we show the effect of changing κc. Increasing κc decreases the curvature of the electrostatic

energy and also decreases the monodomain energy (the asymptotic energy for large w). By increasing κc
for a fixed value of d, the total energy minimum again becomes shallower and then disappears.

Although analytic solutions for the equilibrium domain width cannot be obtained using equation
(2.4), we can obtain approximate solutions. Close to dm, below which the width begins to diverge,
we have

w(d) ffi px
2
ffiffi
e

p d exp p2

8
kc
x b

lk
d

� �
dm ffi p2

8
kc
x blk ¼ p2

4 S10
kc
x

1
P2 :

9>=
>; (2:11)

Details of this approximation are given in appendix B and in [23]. In this approximation, dm has the same
dependence on the system’s parameters as equation (2.10), but the constant prefactor is different.
2The authors in [7] do not provide details on how this was obtained.
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We can also obtain an analytic approximation to the domain width at all thicknesses by replacing
equation (2.4) with a simpler expression which has the correct behaviour in the monodomain and
Kittel limits

F �
elec ¼

P2
S

210kc

1
1þ (1=kcb)(d=w)

, (2:12)

which clearly tends to equations (2.9) and (2.5) when w/d is large and small, respectively. Using this,
we get

w(d) ¼
ffiffiffiffiffiffi
lkd

p

1� kcb
ffiffiffiffiffiffiffiffi
lk=d

p
dm ¼ 4k2cb

2lk � 112z(3)
p3 S10

kc
x

1
P2
S
:

9>>>>=
>>>>;

(2:13)
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Details of this approximation are given in appendix C. This approximation is of the same form as

equation (2.10) but again with a different numerical prefactor. Equation (2.13) gives a good
approximation to dm, but overestimates the domain width near dm. This is because, while equation
(2.12) has the correct behaviour in the monodomain and polydomain limits, it underestimates the
curvature in the intermediate region. In spite of this, the approximation predicts the correct
dependence on the system’s parameters.

Having understood the behaviour of the equilibrium domain width with thickness and the system’s
parameters, we proceed to investigate the effect of changing the surrounding environment of the thin
film. For that purpose a more general expression for the electrostatic energies, similar to equation (2.4)
is needed.
rnal/rsos
R.Soc.Open

Sci.7:201270
3. Generalized electrostatics
The electrostatic energies were obtained for the OL, SW and SL cases. The expressions, including their
derivation, are shown in detail in appendix A. Some of the predictions of the model have been
discussed previously in the literature [19,22–28]. To our knowledge, some of the SL results and all of
the OL results are new. The results for all are presented and compared here.

3.1. Generalized Kittel Law
Taking the Kittel limit for the energies in equations (A 12) and (A 13), we obtain a generalization of
Kittel’s Law:

w(d) ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
lk(ks)d

p

lk(ks) ¼ 210S
P2
Sb(ks)

,

9=
; (3:1)

where κs is the permittivity of the surrounding dielectric material. The generalization is introduced
through the factor b

bSW(ks) ¼ 14z(3)
p3

1
ks þ xkc

bSL(ks, a) ¼
1

1þ a

14z(3)
p3

1
ks þ xkc

bOL(ks) ¼
7z(3)
p3

1þ ks þ 2xkc
(1þ xkc)(ks þ xkc)

� �
:

9>>>>>>>>=
>>>>>>>>;

(3:2)

The SL case has an additional dependence on a ; dPE=dFE, the ratio of thicknesses of the paraelectric
and ferroelectric layers. However, the energy cost of creating a domain wall is also renormalized by
this prefactor, and thus, in the Kittel limit, the ratio α affects the energy scale but does not influence
the behaviour of the domains. For each case in equation (3.2), equation (2.6) is recovered in the limit
κs→ 1 (and a ! 0 for the SL case).

The domain widths for the four different systems are plotted in figure 6. We can see that including the
environment has the effect of shifting the curve upwards, but the square-root behaviour is unaffected.
This makes sense physically: the paraelectric medium contributes to the screening of the depolarizing
field. For higher dielectric constants, this contribution grows, meaning less screening is required by
the domains, so there are fewer domains, and hence the width increases.

The SL and SW cases have the exact same behaviour in the Kittel limit. This is expected, since in the
Kittel limit, the field in the superlattice loops in the paraelectric layers but does not penetrate through to
neighbouring ferroelectric layers. In this regime, the coupling between the ferroelectric layers is weak,
and the ferroelectric layers are essentially isolated from each other, tending to the SW case.

In [22], it was claimed that there should be a factor of two between the length scales of the OL and SW
systems. From equation (3.2), we have

lk,OL(ks)
lk,SW(ks)

¼ bSW(ks)
bOL(ks)

¼ 1þ xkc
1þ ks þ 2xkc

: (3:3)

When κs≈ 1, this is indeed true. However, when κs is comparable to or larger than χκc, the
approximation is not valid. For example, for PTO and STO, χκc∼ 79 and κs = 300 and can be as large
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as 104 at low temperatures, and the difference in the Kittel lengths becomes significantly larger than a
factor of two.

3.2. Beyond Kittel: thin films
Although the square-root curve is simply shifted upwards after including the environment, the
behaviour for thinner films is quite different. In figure 6, we can see that the thickness at which the
domain width diverges is very sensitive to the dielectric environment. In figure 7, we plot the domain
widths for various values of the dielectric permittivity of the substrate material, κs, for the OL and
SW systems, each curve scaled by the relevant Kittel length, lk(ks). We see that dm decreases with
increasing κs. In figure 8, we plot the critical thickness as a function of κs to illustrate this effect. For
the SW system, dm decreases more dramatically. This is expected, as there is screening on both sides
of the thin film in the SW system.

We can understand the effect of the paraelectric permittivity on dm by examining the form of the
electrostatic energy. For example, for the SW system

F SW
elec ¼

1
ks

8P2
S

10p3

w
d

X
n odd

1
n3

1
1þ x(kc=ks) coth ((np=2)x(d=w))

: (3:4)

This is equivalent to the electrostatic energy of the IF system, but with the overall energy and κc both
scaled by κs. As we know from equations (2.10) and (2.13) that dm / k

3=2
c , it is clear that dm should

decrease with increasing κs.

3.3. Superlattice
For the SL system with a ¼ dPE=dFE ¼ 1, we find that dm actually increases with the permittivity of the
paraelectric layers, as shown in figure 9a, contrary to what happens for OL and SW. For small values
of α, the periodic boundary conditions of the superlattice make the electrostatic description very
different from the OL and SW systems. When the paraelectric layers are thin, the depolarizing field
penetrates through them and there is strong coupling between the ferroelectric layers. The superlattice
acts as an effectively uniform ferroelectric material. The average polarization decreases with the
permittivity of the paraelectric layers, and according to equation (2.10), dm increases.

For large spacings between the ferroelectric layers (α≫ 1), the coupling between thembecomesweak, the
SW system being realized for a ! 1. This is illustrated in figure 9c, which is almost identical to figure 7b.

Interestingly, when a ¼ ac ; x ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
ka=kc

p
, dm/lk(κs) is independent of κs. At this ratio, the dielectric

permittivity of the spacer has no influence on the equilibrium domain structure, relative to the length
scale given by lk(κs). This is shown in figure 9b. In figure 10, we plot dm as a function of κs for
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different values of α. We see that when a . ac, dm increases with κs, while it decreases for a , ac, and
remains constant when a ¼ ac. Thus, αc represents a natural boundary between the strong and weak
coupling regimes of superlattices.

The critical ratio αc can be predicted from both the asymptotic and analytic approximations. Using the
analytic approximation to the SL system (see appendix C), we have

dm
lk(ks)

¼ 4(kc þ a�1ks)
2b(ks)

2

/ kc
ka

(1þ (ks=akc))
2

(1þ (ks=xkc))
2

1
P2
S
: (3:5)

From this, we can see that when a ¼ ac, the dependence on κs vanishes.
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(c) a ¼ 100. Each domain width and film thickness is normalized by the Kittel length for that value of κs.
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4. Discussion and conclusion
We have extended the continuum electrostatic description of an isolated ferroelectric thin film within
Kittel’s model to thin films surrounded by dielectric media and FE/PE superlattices. While some of
the generalizations have previously appeared in the literature, a detailed comparison had not been
done before. In doing so, we have understood how the surrounding dielectric materials influence the
domain structure in the ferroelectric materials, both in the Kittel limit and beyond.

In the Kittel limit, the square-root behaviour is only affected in scale, the domain width increasing with
dielectric permittivity, κs. This provides a useful correction to measurements of domain width with film
thickness, as Kittel’s Law for an IF typically underestimates domain widths. Beyond Kittel’s regime, we
found that increasing κs decreases dm, that is, the thickness for which the domain width is minimal.

For FE/PE superlattices, we found that κs can either decrease or increase dm, depending on the ratio
of thicknesses, a ¼ dPE=dFE. We relate this to the different coupling regimes between the ferroelectric
layers, as discussed in [19] for example. When α is large, the ferroelectric layers are weakly coupled,
and the minimum thickness decreases with κs. When α is small, the ferroelectric layers are strongly
coupled, and dm increases with κs. Remarkably, when a ¼ ac ; x ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ka=kc
p

, the dielectric anisotropy
of the ferroelectric layers, dm/lk is unaffected by κs. In reality dm does change, since the Kittel length
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depends on κs, but the scaling is different above/below αc. The critical ratio αc serves as a clear boundary
between the strong and weak coupling regimes from an electrostatic viewpoint.

One important approximation in the Kittel-like model used here is the description of the polarization
in the ferroelectric, assuming a dielectric linear-response modification of the spontaneous polarization PS

(or using equation (2.3) instead of equation (2.2) as free energy term related to the polarization). Within
this approximation, the system approaches a monodomain phase in a thin-limit regime in which the
more complete treatment may predict P = 0. We investigate this possibility by considering a theory
with equation (2.2) for the polarization, and equation (2.12) as the model electrostatic energy. We find
that the polarization is zero for small thicknesses until

dc ¼ 27(kcb)
2lk (4:1)

at which the polarization jumps to PS=
ffiffiffi
3

p
and quickly saturates to PS [34]. Or, coming from d > dc,

the polarization decreases and the domain width increases, until at dc, the ferroelectric material
becomes paraelectric.

If dc < d∞ the theory is unaffected, and the polydomain to monodomain transition would occur before
the ferroelectric to paraelectric transition. Otherwise, the ferroelectric film becomes paraelectric without a
polydomain to monodomain transition. For an isolated thin film of PTO, dm∼ 0.2lk and dc∼ 0.8lk,
meaning a ferroelectric to paraelectric transition takes place before the polydomain to monodomain
transition. However, dc is also very sensitive to the environment of the film. For a sandwich system
with a thin film of PTO between two regions of STO, again dc≫ dm. For strongly coupled FE/PE
superlattices (small α), however, dm increases with κs, and we would have dm≫ dc, and therefore the
thin-limit behaviour presented above should be observable before the films becoming paraelectric.

The model described in this paper makes use of a number of significant approximations. Domains are
typically not straight or of infinite length, and the domain structure may not be an equilibrium one (A≠
0, ± 1, see appendix A). In addition, the polarization gradients expected close to surface, interfaces and
domain walls are better described within a Ginzburg–Landau theory, which will give significantly
different predictions for ultrathin films, where complex structures such as polar vortices and
skyrmions have been observed [57,58].

The comparative study offered in this work, however, gives the expected behaviour of ferroelectric/
dielectric heterostructures within the simplest Kittel continuum model (continuum electrostatics for a
given spontaneous polarization and dielectric response, plus ideal domain wall formation). While the
domain width outside of Kittel regime may not be a realistic description for some materials, the
values of dm predicted by this theory provide an estimate for when Kittel’s Law breaks down. In
particular, we have seen how the breakdown of Kittel’s Law can be changed by the material
parameters of the ferroelectric, as well as the surrounding environment. The described behaviours are
already quite rich, and we think they represent a paradigmatic reference as basis for the
understanding of more complex effects. In particular for superlattices, the strong to weak coupling
regime separation based on this simplest model should be a useful guiding concept.

Data accessibility. The work in this paper has no data and the figures did not require any special code to generate. They
were generated by minimizing the free energy equation (2.1) with electrostatic energies equations (2.4), (A 12) and (A
13) numerically in Mathematica. A Mathematica notebook containing the code used to generate all figures in this
paper is included in the electronic supplementary material.
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Appendix A. Electrostatics
Following [6], we obtained the expressions for the electrostatic energies of the OL, SW and SL systems.
We present the derivation for the SL system, but the method also applies to the OL and SW systems, the
only difference being the boundary conditions.

Consider a periodic array of ferroelectric and paraelectric layers as shown in figure 11. The
spontaneous polarization of the ferroelectric layer has a 180° stripe domain structure with magnitude ±PS
and widthsW+,W−. The unit cell of such a system is formed by one positive and one negative polarization
domain in the x-direction, with period W =W+ +W−, and one ferroelectric and one paraelectric layer in the
z-direction, with period D = dFE + dPE. As mentioned previously, we assume that the widths of the domain
walls are infinitely thin. Thus, we write the spontaneous polarization as a Fourier series

PS(x) ¼ APS þ
X1
n¼1

4PS

np
sin

np
2

(Aþ 1)
� �

cos (nkx), (A 1)

where A ¼ Wþ�W�
W is the mismatch between the domains and k = 2π/W. We can see that the spontaneous

polarization is split into a monodomain term, the average polarization APS, and polydomain terms in
the infinite series. The polydomain limit is obtained when A→ 0, i.e. the domain widths are equal. The
monodomain limit is obtained when A→ ±1, i.e. one of the domain widths tends to zero. To obtain the
electric fields in the SL, we must first determine the electrostatic potentials. They satisfy the following
Laplace equations:

kij@i@ jfII ¼ 0

ksr2fI ¼ ksr2fIII ¼ 0,

)
(A 2)

where regions I, II and III are thedifferentparts of theunit cell as shown in figure 11. Since the terms in (A1) are
linearly independent, we can treat themonodomain and polydomain cases separately. Clearly, the potentials
must be even and periodic in x, so the general solutions to (A 2) are of the form

fI(x, z) ¼ c10(z)þ
X1
n¼1

cos (nkx)(c1n e
nkz þ d1n e

�nkz)

fII(x, z) ¼ c20(z)þ
X1
n¼1

cos (nkx)(c2n e
nk
ffiffiffiffiffiffiffiffi
ka=kc

p
z þ d2n e

�nk
ffiffiffiffiffiffiffiffi
ka=kc

p
z)

fIII(x, z) ¼ c30(z)þ
X1
n¼1

cos (nkx)(c3n e
nkz þ d3n e

�nkz):

9>>>>>>>>>>=
>>>>>>>>>>;

(A 3)

In order to obtain the potentials, we must use the symmetries and boundary conditions of the system to
determine the coefficients

fI
dFE
2

� �
¼ fII

dFE
2

� �

fIII � dFE
2

� �
¼ fII � dFE

2

� �

fI
D
2

� �
¼ fIII �D

2

� �
(DI �DII) � n̂ ¼ 0

(DIII �DII) � n̂ ¼ 0

fI(z) ¼ �fIII(� z):

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

(A 4)
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z

Figure 11. The geometry of a FE/PE superlattice. Regions I and III correspond to half of a paraelectric layer each and region II is the
ferroelectric layer. The thicknesses of the layers are indicated on the right and W+ and W− are the widths of the different domain
orientations. The black squares are positive domains, with polarization +P and the white squares are negative domains with
polarization −P. The system is periodic in the horizontal and vertical directions, with periods W = W+ + W− and D = dFE +
dPE, respectively.
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The first two conditions are obtained by matching the potentials at the interfaces. The third comes from
imposing periodic boundary conditions on the unit cell. For the IF, OL and SW systems, the third
condition would be replaced by

lim
z!1 @zfI(x, z) ¼ 0

lim
z!�1 @zfIII(x, z) ¼ 0:

9=
; (A 5)

The fourth and fifth are obtained by matching the normal components of the displacement fields,

DI ¼ 10ksEI

DII ¼ 10kEII þ PS

DIII ¼ 10ksEIII,

9>=
>; (A 6)

at the interfaces, and the final condition is obtained from the symmetry of the system under z→−z.
After some algebra, we find that the potentials are given by

fI(z) ¼ � APS

10
kc
dFE

þ ks
dPE

� �
dPE

(z�D=2)

�
X1
n¼1

anbn
cos (nkx) sinh (nk(z�D=2))

xkc cosh (nkx(dFE=2))þ ks coth (nk(dPE=2)) sinh (nkx(dFE=2))

fII(z) ¼
APS

10
kc
dFE

þ ks
dPE

� �
dFE

z

þ
X1
n¼1

an
cos (nkx) sinh (nkxz)

xkc cosh nkx
dFE
2

� �
þ ks coth nk

dPE
2

� �
sinh nkx

dFE
2

� �

fIII(z) ¼ � APS

10[kc=dFE þ (ks=dPE)]dPE
(zþD=2)

�
X1
n¼1

anbn
cos (nkx) sinh (nk(zþD=2))

xkc cosh (nkx(dFE=2))þ ks coth (nk(dPE=2)) sinh (nkx(dFE=2))
,

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(A 7)

where

an ¼ 4PS

10n2pk
sin

np
2

(Aþ 1)
� �

bn ¼ sinh (nkx(dFE=2))
sinh (nk(dPE=2))

:

9>>>>=
>>>>;

(A 8)
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The monodomain part of the potential has a zig-zag shape as expected, which is sensitive to the ratio of

layer thicknesses and permittivities. The electrostatic energy of the system is obtained from

F elec ¼ 1
2

ð
kijEiEj dxdz, (A 9)

where the fields are the gradients of the potentials: E ¼ �rf. We integrate over the domain period in the
x-direction and over both layers in the z-direction. Finally, the total electrostatic energy of the system is
given by the second line of equation (A 12). The first line and equation (A 13) are the electrostatic energies
of the SW and SL cases, respectively, obtained using the same method. In all cases, the energy is
conveniently split into monodomain and polydomain parts. We can see that the monodomain parts
for the OL and SW cases are identical to that of a thin film in a vacuum, as expected. We can also see
that the polydomain part vanishes when A→ ±1, and the polydomain energy is obtained when A→ 0.

It will be useful for us to work in terms of energy per unit volume. For the OL and SW cases, we simply
divide by the thickness of the thin film. For the superlattice, however, we must use the total volume of the
unit cell. For convenience, we would like to work in terms volume of the ferroelectric layer. So we let

d ¼ dFE

a ¼ dPE
dFE

,

9>=
>; (A 10)

so that

dPE ¼ ad
D ¼ (1þ a)d:

)
(A 11)

The energies in equation (A 12) give a complete picture of the electrostatics of ferroelectric thin films
and superlattices.

F SW
elec ¼

P2
S

210kc
A2 þ 16kc

p3

w
d

X1
n¼1

sin2 (np=2(Aþ 1))
n3

1
ks þ xkc coth ((np=2)x(d=w))

 !

F SL
elec ¼

1
(1þ a)

P2
S

210kc

� kc
kc þ a�1ks

A2 þ 16kc
p3

w
d

X1
n¼1

sin2 (np=2(Aþ 1))
n3

1
xkc coth ((np=2)x(d=w))þ ks coth ((np=2)a(d=w))

 !
:

9>>>>>>>>>>=
>>>>>>>>>>;

(A 12)

For the substrate case, the energy is given by

FOL
elec ¼

P2
S

210kc
A2 þ 8kc

p3

w
d

X1
n¼1

sin2 (np=2(Aþ 1))
n3

g�2
n Gn

 !
, (A 13)

where

gn ¼ (x2k2c þ ks) sinh npx
d
w

� �
þ xkc(1þ ks) cosh npx

d
w

� �

Gn ¼ (x2k2c � ks)(1þ ks)� 4x2k2c (1þ ks) cosh npx
d
w

� �

þ (1þ ks)(3x2k2c þ ks) cosh 2npx
d
w

� �

� 4xkc(x2k2c þ ks) sinh npx
d
w

� �

þ xkc(1þ 2x2k2c þ ks(4þ ks)) sinh 2npx
d
w

� �
:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

(A 14)

It is important to check that the polydomain part of the energy reproduces the monodomain and Kittel
energies in the appropriate limits. Letting A = 0, we have

F SL
elec ¼

P2
S

210kc

16kc
p3

w
d

X
n odd

1
n3

1
xkc coth ((np=2)x(d=w))þ ks coth ((np=2)a(d=w))

 !
, (A 15)
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ignoring the prefactor of (1þ a)�1. The monodomain limit is realized when w→∞. Using the expansion

coth (ax) � 1=ax about x = 0, we get

F SL ! P2
S

210(kc þ a�1ks)
8
p2

X
n odd

1
n2

¼ P2
S

210(kc þ a�1ks)
, (A 16)

since
P

n odd 1=n
2 ¼ p2=8. For the Kittel limit, d/w≫ 1. Using coth (x) ! 1 for large x, we get

F SL
elec !

P2
S

210

14z(3)
p3

1
ks þ xkc

w
d
, (A 17)

where we used
P

n odd 1=n
3 ¼ 7z(3)=8.
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Appendix B. Asymptotic approximation of the domain width in the
ultrathin limit
Following the method in [23], we obtain an approximation to the equilibrium domain width behaviour in
the ultrathin limit. For the IF system, total energy is approximately

F ffi S

w
þ 8P2

S

10kcp2

1
j

X1
n¼0

1

(2nþ 1)3
tanh

(2nþ 1)
2

j

� �
, (B 1)

when j ¼ px d
w � 1. Using

tanh
(2nþ 1)

2
j

� �
¼
ð1
0
@l tanh

(2nþ 1)
2

jl

� �� �
dl, (B 2)

we get

F ffi S

w
þ 4P2

S

10kcp2

ð1
0
dl
X1
n¼0

1

(2nþ 1)2
1

cosh2 (((2nþ 1)=2)jl)

� S

w
þ 16P2

S

10kcp2

ð1
0
dl
X1
n¼0

e�(2nþ1)jl

(2nþ 1)2
:

(B 3)

From [23] ð1
0
dl
X1
n¼0

e�(2nþ1)jl

(2nþ 1)2
¼ p2

8
� j

4
ln

ep

j

� �
þO(j3), (B 4)

where p = 1/2(3 + ln(4)). Thus, our approximation to the energy becomes

F ffi S

w
þ P2

S

210kc
þ P2

S

210kc
3� 8

p
x
d
w
ln L

w
d

� �� �
, (B 5)

where

L ¼ ep

px
: (B 6)

The first two terms are the domain energy and monodomain energy, and the third term is an asymptotic
correction. Minimizing with respect to w, we get

w(d) ¼ px

2
ffiffi
e

p d exp
p2

8
kc
x
b
lk
d

� �
: (B 7)

The corresponding minimum width is

dm ¼ p2

8
kc
x
blk: (B 8)
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Appendix C. Analytic approximation to the domain width

We can obtain an analytic approximation to the equilibrium domain behaviour if we replace the
electrostatic energy with a simpler function which reproduces the monodomain and Kittel energies in
the appropriate limits. For the IF system, we could use

F �
elec ¼

P2
S

210kc|fflffl{zfflffl}
Fmono

1

1þ 1
kcb

d
w

: (C 1)

When w/d is very large, the second term in the denominator goes to zero and we get F �
elec ¼ Fmono. When

w/d is very small, the second term in the denominator dominates and we getF �
elec ¼ (P2

S=210)b
w
d ¼ FKittel.

This approximation can also be used for the OL and SW systems, since the extension to these systems is
simply achieved via b ! b(ks). For the superlattice, the energy in the monodomain limit is different

F SL
mono ¼

1
(1þ a)

P2
S

210(kc þ a�1ks)
: (C 2)

The prefactor (1þ a)�1 scales the energywith the ratio of the layer thicknesses. The energy cost of creating a
domain structure is also scaled by this prefactor.Now, themonodomain energy for a SL is similar to the case
of a thin film, but with renormalized permittivity: kc ! kc þ a�1ks. When a ! 1, the thin film expressions
are recovered, sowe canwork with the SL system and the other systems can be recovered by taking a ! 1
and the correct choice of b(ks).

The total energy for the SL system is

F ¼ S

w
þ F SL

mono

1þ (x=w)
, (C 3)

where

x ¼ d
(kc þ a�1ks)b(ks)

: (C 4)

Minimizing equation (C 3), we get

w(d) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
lk(ks)d

p

1� (kc þ a�1ks)b(ks)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lk(ks)=d

p : (C 5)

Clearly, this expression has square-root behaviour for large d (Kittel) and diverges for small d
(monodomain). The width diverges at

d1 ¼ (kc þ a�1ks)
2b(ks)

2lk(ks), (C 6)

and has a minimum at

dm ¼ 4(kc þ a�1ks)
2b(ks)

2lk(ks) ¼ 4d1

¼ 810(kc þ a�1ks)
2b(ks)S

1
P2
S
:

(C 7)

Interestingly, the relation dm = 4d∞ is independent of system-specific parameters.
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