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As we read this text, our eyes dynamically adjust the focal length to keep the line image in focus
on the retina. Similarly, in many optics applications the focal length must be dynamically tunable.
In the quest for compactness and tunability, flat lenses based on metasurfaces were introduced.
However, their dynamic tunability is still limited because their functionality mostly relies upon
fixed geometry. In contrast, we put forward an original concept of a tunable Optical Magnetic Lens
(OML) that focuses photon beams using a subwavelength-thin layer of a magneto-optical material in
a non-uniform magnetic field. We applied the OML concept to a wide range of materials and found
out that the effect of OML is present in a broad frequency range from microwaves to visible light.
For terahertz light, OML can allow 50% relative tunability of the focal length on the picosecond
time scale, which is of practical interest for ultrafast shaping of electron beams in microscopy. The
OML based on magneto-optical natural bulk and 2D materials may find broad use in technologies
such as 3D optical microscopy and acceleration of charged particle beams by THz beams.
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The lens as a tool for focusing transmitted light has
been around for four thousand years1. It imprints a
proper phase shift onto a light wavefront making the
wavefront converging. Conventional optical components
(lenses, waveplates, prisms) are optically thick2, and rely
on their geometry to imprint required phase shifts by
means of the difference in refractive indices. This ap-
proach faces a fundamental limitation: the lack of trans-
parent materials with a high contrast of indices of refrac-
tion (a higher index of refraction implies lower transpar-
ency because of the Kramers-Kronig relations).

In contrast, a new field of planar or flat optics has been
thriving for the past decade. The concept consists in im-
printing abrupt, controlled phase shifts onto transmitted
light by a 2D array of subwavelength-thin nanoresonat-
ors, a metasurface3–10. Thus, planar optical components
can be made nanometre thin and comply with industrial
lithography fabrication.

One of the desired functionalities of both conventional
and planar lenses is the active tunability of focal length:
think of the eye. Nature’s solution realised in mammals’
eyes is to tune the focal length by changing the curvature
of the lens with the ciliary muscle and by employing a
slight gradient of the index of refraction11. A number of
eye-inspired approaches and metasurface-based methods
have been demonstrated using mechanical or electric con-
trol12–21. Meanwhile, ultrafast and wide active tunability
is still challenging13.

At the same time, actively tunable lenses have been
used for around a century in electron microscopy to fo-
cus charged particle beams by spatially non-uniform mag-
netic fields. However, magnetic focusing does not apply
to chargeless photon beams. In this Letter, we put for-
ward an original concept of an Optical Magnetic Lens

(OML) that focuses photon beams using a subwavelength-
thin layer of a magneto-optical material immersed into a
non-uniform magnetic field. We set forth the physics of
the OML and exemplify its performance in different fre-
quency bands with bulk and 2D materials.

The OML features tunability of the focal length via
changing the strength or curvature of the magnetic field.
Specifically, the wavefront of an optical beam incident

Figure 1. (colour online) Focusing of a photon Gaussian beam
with an electric field ~E by a lens. Both the geometry and
medium polarisation ~P of refractive lens (a) govern the cu-
mulative phase shift of the transmitted beam wavefront. In
the OML (b), the phase shift is solely due to non-uniform ~P ,
which however depends on the transverse profile of the mag-
netic field ~B(~r) provided by the coil. Thus, in the OML the
wavefront can be controlled via ~B(~r). Dashed lines show the
envelopes of the focused photon beam for different magnetic
field curvatures and the blue arrow indicates the change of
the waist location.
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onto the OML receives a phase shift according to the
transverse distribution of the magnetic field strength
(Fig.1). The effect is the most profound in the vicin-
ity of cyclotron resonance in the chosen material, with
a phase shift up to one rad, resulting in cm-scale focal
distances.

BRIEF THEORY

To illustrate our concept, let us examine the transform-
ation of a Gaussian optical beam by the OML. Consider
a subwavelength-thin, infinitely wide, flat layer of an iso-
tropic medium, supporting free charges. The layer is im-
mersed into an axially symmetric, static, non-uniform
magnetic field. The magnetic field is normal to the layer
and its strength varies quadratically with distance in the
medium [such as the field of a coil or ring, see Figs. 1,
5, Eq. (5) and Supplementary (C)]. Let the origin of a
Cartesian coordinate system (x, y, z) be aligned with the
extremum of the magnetic field in the layer and the z-
axis being normal to the layer. A Gaussian optical beam
is normally incident onto the layer with the beam waist
positioned in the layer: ~E = ~E0e−(x2+y2)/w2

0 . Here, ~E0

and w0 are the amplitude and waist, respectively. A si-
nusoidal behaviour in time at frequency ω is assumed.

We treat the layer as an anisotropic medium with its
charge carriers oscillating in the combined optical and
static magnetic field. Solving the equations of motion
for charge carriers in the layer and relating the electric
current to the electric field, we find the tensor of dielectric
permittivity [see22 and Supplementary (D)]

ε̂ =

1 + ε⊥ −iβ 0
iβ 1 + ε⊥ 0
0 0 ε‖

 (1)

where ε⊥ differs from the convention by unity to shorten
coming derivations. The elements of this tensor are func-
tions of r =

√
x2 + y2 because the static magnetic field

depends on r as B = B0p(r), with B0 being the field
amplitude and p(r) the radial profile. For field inhomo-
geneity small on the wavelength scale, λ d(log p)/dr < 1,
with λ being the wavelength, the functional form of ε̂
remains unchanged [see Supplementary (D)].

The electric field of the Gaussian beam propagating
through the layer in the positive z direction is governed
by the inhomogeneous paraxial wave equation23(

∆⊥ + 2ik∂z
)
~E = −k2

(
ε̂− Î

)
~E, (2)

where Î is the unit tensor, k ≡ 2π/λ = ω/c is the wave
number, c is the speed of light, ∆⊥ and ∂z are the trans-
verse Laplacian and the partial derivative along z, re-
spectively. For left-handed (LH), subscript +, and right-
handed (RH), subscript −, circularly polarised waves
E± = Ex ± iEy, the paraxial wave equation splits and
takes on the scalar form(

∆⊥ + 2ik∂z
)
E± = −k2

(
ε⊥ ∓ β

)
E±. (3)

Outside the layer, the longitudinal field component Ez

can be found from the Coulomb law ~∇ · ~E = 0.
The reflected Gaussian beam propagating in the neg-

ative z direction is described by the same paraxial equa-
tion as (3) with the only difference that the wavenumber
k must be replaced by −k. As usual in electrodynamics,
the boundary conditions consist in the continuity of the
electric field E± and its derivative with respect to the
propagation coordinate z.

Since the layer is subwavelength thin, diffraction can
be safely disregarded and the mathematical problem be-
comes essentially one-dimensional. The analytical solu-
tion for reflected and transmitted waves is described in
terms of reflection, R, and transmission, T , Fresnel coef-
ficients, respectively. Namely, the electric field of the
transmitted wave reads as E± = T E0,±e−r

2/w2
0 . For nor-

mal incidence, the Fresnel coefficients take on a simple
and well known form24

T± =
1

1 + α±
, R± =

−α±
1 + α±

, α± = − iπd
λ

(
ε⊥∓β

)
, (4)

under the assumption that |α±| � 1. General formu-
las for arbitrary incidence angles can be found, for ex-
ample, in25. The important result is that the Fresnel
coefficients locally depends on the transverse coordinate
via non-uniform magnetic field.

For a 2D material with conductivity σ±, the para-
meter α± is simply the normalised conductivity: α± =
(2π/c)σ±. Furthermore, for a 2D material the coefficients
T± and R± in (4) are exact for any value of α±. Note
that it is common to describe 2D materials by a conduct-
ivity tensor but we choose to use the permittivity tensor
to unify the notations for 2D materials and thin layers of
bulk materials.

The Fresnel coefficients in Eq. (4) depend on a local
static magnetic field, R±[B(r)], T±[B(r)], thus setting
the spatial phase profile of the reflected and transmit-
ted electromagnetic fields of the beam. The inhomogen-
eous phase shift ϕ± = arg

{
T±[B(r)]

}
in Eq. (4) impacts

the shape of the transmitted wavefront. In particular, a
quadratic profile of the magnetic field

p(r) = 1 +
r2

R2
c

,
r

Rc
� 1 (5)

with Rc being the radius of curvature, gives the focusing
effect. To see the focusing explicitly, we compare the
phase shift of the OML to that of a conventional lens,
δϕ = kr2/(2f), where f is the focal length. To simplify
ϕ±, we Taylor expand it with respect to (r/Rc) as

ϕ± = ϕ±|r=0 +
1

2
ϕ′′±|r=0

r2

R2
c

, (6)

with ϕ′′± being the second derivative of ϕ±. Similarly
to δϕ, the inhomogeneous phase shift of the OML scales
quadratically with r [second term in Eq. (6)], thus clearly
indicating a focusing effect. By comparing the expanded
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ϕ± with δϕ, we find the focal length of the tunable flat
OML for LH and RH circularly polarised waves

f± =
kR2

c

ϕ′′±
. (7)

Image formation by the lens is well known in optics
and discussed in Supplementary (B) for completeness.

Examine the contents of results (4) and (7). First,
the homogeneous part of the phase shift ϕ± leads to
the Faraday rotation of linearly polarised light. Second,
within the layer, left and right circularly polarised com-
ponents of the electric field experience different effective
permittivities α±, and the focal length (7) contains dif-
ferent signs. Thus, the polarisation components have dif-
ferent focal lengths. Third, a comparison with full-wave
simulations showed that the solution (7) is accurate un-
der a constraint of w0 < 2Rc, more relaxed than the
one in Eq. (5). Fourth, the reflectivity of the layer can
be high and thus allows for OML operation in reflecting
telescope or mirror geometry.

To obtain an explicit expression for f± as a function of
parameters of the film, let us proceed to the elements of
the tensor ε̂, Eq (1). The charges oscillate around the ap-
plied magnetic field with a frequency ωc(r) = ω0Mp(r).
Here, ω0 = qB0/mec is the reference (on-axis) cyclotron
frequency with me being the electron mass,M = me/m

∗

is the mass reduction ratio, q and m∗ are the charge
and effective mass of the particle, respectively. In fact,
the elements of the tensor ε̂ correspond to a magnetised
plasma (Drude model)26–28 and read

ε⊥ =
−A(ω − i/τ)

ω [(ω − i/τ)2 − ω2
c (r)]

, β =
ωc(r) ε⊥
(ω − i/τ)

, (8)

where A is a material-specific constant [s−2] and τ is
the relaxation time. Particular cases with more familiar
expressions for ε⊥ and β can be found in Supplementary
(A). Following Eq. (4), we obtain a simple expression for
the focal length for LH and RH circularly polarised waves
transmitted through a layer of thickness d as

f± = ∓R
2
c

Ad
ω

Mω0

[(ω ∓Mω0)2 + (1/τ)2]2

(ω ∓Mω0)2 − (1/τ)2
. (9)

This simple result allows one to calculate the focal length
of the OML for different materials as illustrated below.
Due to the term (ω ∓Mω0)2 in the denominator in (9),
f± has a resonant behaviour for one of the polarisations
of the optical beam for a given magnetic field orientation.
Namely, for ω ≈ Mω0 a cyclotron resonance occurs. At
the resonance, Eq. (9) simplifies to f± = ∓R2

c/(Adτ2).

EXAMPLES OF MATERIALS

Consider potential practical realisations of the OML
for different frequency bands.

Material suitable for magnetic focusing in the mi-
crowave range are magnetic dielectrics, or ferrites, such

as Yttrium Iron Garnet (YIG). Instead of charge carriers,
there are unpaired spins precessing in the applied mag-
netic field. The functional form of ε̂, Eq. (1), and its com-
ponents remain unchanged. Hence, the result in Eq. (9)
can be applied directly to ferrites, where ω0 should be
understood as the Larmor frequency [see Supplementary
(A)]29. Practical results for the OML in the microwave
region are presented in Table I. A focal length of tens
of centimeters is feasible. Ferrite-coated mirrors can po-
tentially be used for tunable focusing of quasi-optical mi-
crowave beams in fusion experiments, e.g. for plasma
probing or electron-cyclotron-resonance heaters30,31.

To operate above microwaves, we need a material with
a high mass reduction factor M, M � 1. Doped
graphene is an outstanding candidate for a higher-
frequency OML. We use the semiclassical model to de-
scribe doped graphene in magnetic fields32. This model
accounts only for intraband transitions, but is valid in
a broad range covering the terahertz and mid-infrared
bands under the condition ~ω < 2|µc|. Here, µc is the
chemical potential and ~ is the reduced Planck constant.

To use Eq. (9) directly for a graphene sheet with a con-
ductivity σ̂, we approximate graphene by a layer with a
finite thickness d and introduce an effective dielectric per-
mittivity tensor ε̂eff = (4πi/ωd) σ̂24. Then, the elements
of ε̂eff assume the form given by Eq. (8). As it should
be for a 2D material, the dependence on d in f± can-
cels out. For doped graphene, M is meV

2
F /|µc|. We see

that graphene posses an intriguing possibility of increas-
ing the mass reduction factor M by increasing the Fermi
velocity vF and operating with a small chemical potential
µc. From the practical points of view this implies that the
cyclotron resonance can be reached for lower magnetic
fields for the same THz frequency. Recent experiments
in the THz and IR regions show that the Fermi velo-
city can be engineered by placing graphene on a suitable
dielectric substrate33,34. Assuming a chemical potential
µc = 0.19 eV and Fermi velocity VF = 2.5 · 106 m/s, we
estimateM≈ 187 and A ≈ 1.2 ·1018 s−2. The remaining
parameters are listed in the Table I.

Figure 2 demonstrates a clear resonant behaviour of
the transmitivity, reflectivity and phase shifts of a single-
layer-graphene OML in a uniform magnetic field, typical
for the cyclotron resonance. The maximum of the de-
rivative of the phase shift with respect to the magnetic
field, dφ/dB0, suggests an operating point of the OML in
a non-uniform magnetic field. Namely, for B0 ≈ 0.2 T,
dφ/dB0 is maximal and f attains its minimum value in
a non-uniform B given that other parameters are fixed.
The inverse relaxation time of graphene, 1/τ , plays the
role of the resonance bandwidth: larger values of τ (high-
purity graphene) provide a sharper resonance and thus a
larger phase shift (on the order of one radian). At the
same time, the OML appears tolerant to smaller τ values
so that the graphene OML does not require high-quality
graphene flakes for its reasonable performance.

For a LH circular polarisation of the optical beam in-
cident onto graphene OML, we calculate a focal length of
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Table I. Examples of materials for Optical Magnetic Lens in transmission mode (T) at normal incidence φi = 0 and in reflection
mode (R) at φi = 20◦. For InSb, THz phonon resonances must be avoided.

Parameter Graphene (T) Graphene (R) InSb (T) InSb (R) YIG (T)
Light frequency ω/2π 1 THz 1 THz 3 THz 2 THz 50 GHz
Relaxation time τ 0.5 ps 1 ps 3 ps 3 ps ≈ 0.1 µs
Efficiency (|T |2 or |R|2) 32% 55% 27% 66% 72%
On-axis field B0 0.2 T 0.2 T 2.1 T 1.7 T 1.8 T
Field curvature Rc 0.32 cm 0.3 cm 1.5 cm 1.5 cm 70 cm
Film thickness d monolayer monolayer 0.6 µm 3 µm 0.1 µm
Focal length f 8 cm 40 cm 16 cm 40 cm 51 cm

Figure 2. (colour online) Transmission, reflection, phase shift
and derivative dφ/dB0 calculated via Fresnel coefficients (4)
for a graphene layer w.r.t. applied magnetic field B0 (uni-
form). The chemical potential is 0.19 eV.

some cm with a wide adjustment range given by the field
amplitude B0, Fig. 3b, and curvature Rc. Additional act-
ive adjustment of the focal length can be done by varying
the chemical potential µc, Fig. 3a. Thus, the OML can
bring vast tunability into existing THz optics.

We note that only one circular polarisation component
undergoes resonant focusing [ω ≈ Mω0, see Eq. (9)] by
the OML. Hence, such a lens allows for selective focus-
ing by choosing the direction of the external magnetic
field. This effect can be potentially used for polarisation-
sensitive detection of THz light.

The OML can also be used in combination with con-
ventional lenses, substantially improving the perform-
ance of the latter. As an example, Figure 3c shows 50%
relative tunability of a conventional lens, having a fixed
focal length f of 10 cm, decorated with the graphene
OML. The focal distance of the combined lens can be
tuned from around 5 to 12 cm.

To visualise the effect of the OML as well as to cross-
check our analytical results, we run full-wave simulations
for the particular example of graphene OML. We use
commercial software COMSOL Multiphysics. Thanks
to the azimuthal symmetry of the problem, the model
can be built in 2D to reduce required computation
power. The incident Gaussian beam (background field)
is defined analytically and the graphene layer is represen-
ted as a surface current density given by 2D conductiv-

Figure 3. (colour online) (a) Focal length of graphene OML
vs chemical potential for different values of the magnetic field
strength. (b) Focal length of graphene OML vs applied mag-
netic field. (c) Focal length of a conventional lens com-
bined with graphene OML vs applied magnetic field. Here,
τ = 0.5 ps, Rc = 3.2 mm, λ = 300 µm.

ity tensor24,28,32. The presence of the non-uniform mag-
netic field is included analytically into the conductivity
tensor28. The final field distribution is calculated as the
field scattered by the graphene layer.

The focusing effect is clearly seen in Fig. 4. If no mag-
netic field is applied (lens is “off”), the Gaussian beam di-
verges in the region to the right from the graphene OML
(top plot). In contrast, a new waist of the beam appears
(bottom plot), when a profiled magnetic field is applied
(lens is “on”). The focal lengths calculated analytically,
6.5 cm, and numerically, 6.4 cm, match very well, thus
validating our analytical approach, Eqs. (1)-(9).

In Fig. 4, for having a sharper image and clearer visual
illustration, we partly compensated for lens aberrations
by adding a term −0.8r6/R6

c to the magnetic field profile
p(r). In the simulation, τ = 0.5 ps, µ0 = 0.1 eV, B0 =
0.09 T, Rc = 1.2w0, w0 = 6λ with λ = 300 µm.
Semiconductors and their heterostructures are another

important example of materials for the OML. The soph-
isticated underlying mechanism of charge transport signi-
ficantly reduces the effective mass of electrons35,36, which
can increase OML operating frequencies. The highest
value of M ≈ 50 in this class of materials is achieved
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Figure 4. (colour online) Top plot: normalised field distri-
bution transmitted through the graphene OML without mag-
netic field (OML “off”). Bottom plot: normalised field distri-
bution with the OML “on”.

for indium antimonide (InSb)37. Assuming parameters
tabulated in Ref.38, we calculate A = 9.26 · 1025 s−2 and
the focal length of about 16 cm (see Table I). Compared
to graphene, tunability in InSb is limited to magnetic
field only. Also, InSb exhibits phonon modes in the same
frequency range suppressing resonant focusing.

We also anticipate a possibility to use an array of ferro-
magnetic nanoresonators (e.g. TbCo39,40) for the OML
at optical frequencies. Operating conditions are similar
to those for ferrites discussed above. The focusing ef-
fect is weaker than in the THz range (the inhomogeneous
phase shift is on the order of 10 mrad for B0 ∼ 1 T), but
allows for fine-tuning of the focal length if the array is
deposited on the surface of a plano-convex lens, similar
to the example with graphene in Fig. 3c.

From a different perspective, the OML effect may im-
pact propagation of electromagnetic waves in space sim-
ilarly to a gravitational lens. Namely, a wavefront trans-
formation may occur in cosmic plasma exposed to non-
uniform magnetic fields generated by different massive
astrophysical objects, thus affecting divergence of light
from a remote source [see Supplementary (A)].

EXPERIMENTAL CONSIDERATIONS

Let us describe a possible experimental setup for focus-
ing THz light with a graphene-based lens. Reduced to its
essentials, the setup can consist of just four key compon-
ents: (1) the lens itself: a transparent substrate decor-
ated with large-scale graphene fabricated with chemical
vapour deposition41; (2) a THz source based on optical
rectification from, e.g., a zinc telluride crystal42 to gener-
ate an optical beam with a spectrum peaking at 1 THz;
(3) a simple ring magnet to set the focal length and shape
of the optical beam; (4) a THz beam imager based, for
instance, on electro-optical sampling42 or an array of mi-
crobolometers43. In practice, it is advantageous to place
an additional thin current loop next to the ring magnet
for fine tuning of the magnetic field curvature. It turns
out that the optical quality of the proposed OML suffers
from spherical aberrations if a simple quadratic profile
of the magnetic field is applied. The phase shift of the
transmitted light ϕ± given by the Fresnel coefficient (4)

is a complex function of B and hence a complex function
of r. To correct for the aberrations, the transverse profile
of the magnetic field must have not only a quadratic com-
ponent (r2), but also a component depending on r6. For
instance, in the simulation in Fig. 4 the optimal trans-
verse profile of B is (1 + r2/R2

c − 0.8r6/R6
c). This profile

can be realised in practice by properly choosing the lon-
gitudinal position of the graphene layer with respect to
the ring magnet plane. In addition, for fine tuning of the
magnetic field profile a current loop can be used.

For typical OML operation the radius of curvature of
the magnetic field must be larger than the THz beam
waist, Rc ≈ (1.2 − 1.3)w. At the same time, for a ring
magnet Rc is usually smaller than the physical radius of
the ringR, see Fig. 5. Hence, nearly 100% transmission of
the THz beam through the aperture of the ring is possible
since R ≈ 1.5w. The typical numerical aperture is 0.1.

Thus, we have four different knobs in the OML mag-
net design to compensate for spatial aberrations: (i)
graphene layer position w.r.t. the ring magnet, (ii) sep-
aration between the ring magnet and the current loop,
(iii) current loop radius and (iv) the number of windings.

DISCUSSION

At THz frequencies, the response time of the graphene-
based OML can potentially be as short as a few pico-
seconds. Though the physical mechanism of the phase
shift induced in the OML is resonant and relies on cyclo-
tron resonance, the relaxation time is typically less than
a picosecond. That allows for ultrafast tuning. In prac-
tice, the response time will be limited by technical aux-
iliaries such as the response time of an electromagnetic
coil used to create the required magnetic field profile.
However, there is a promising solution for tuning the
graphene-based OML on the picosecond time scale: to
use quasi-half-cycle THz pulses42,44 to additionally con-
trol the chemical potential, see Fig. 3a, and correspond-
ingly adjust the focal length.

In contrast to sinusoidal electromagnetic pulses, quasi-
half-cycle pulses maintain their electric field oriented in
the preferential direction. Hence, the effect of such pulses
on the graphene layer can be thought of as an instantan-
eous DC voltage. A permanent magnet can be used to
preset a desired focal length of the OML and the elec-
tric field of an additional quasi-half-cycle THz pulse will
modify the chemical potential on the picosecond time
scale thus adjusting the focal length.

In summary, we introduced a concept of the magnetic-
ally tunable flat lens. It takes advantage of the resonant
magnetic-field-dependent phase shift and features tunab-
ility by means of magnetic field control. We applied our
model to a wide range of materials (noble metals, semi-
conductors, graphene, ferrites and nanoparticle arrays),
and found out that, with varying efficiency, the OML can
be realised in a broad frequency range from microwaves
to visible light. Moreover, using other magnetic field pro-
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Figure 5. (colour online) Simulated spatial distribution of the magnetic field of a commercially available neodymium ring
magnet. (a) Magnetic flux density (norm) distribution, a current loop for correction is indicated as an example; (b) The
relevant z-component of the magnetic field at different positions along z, fitted with 6th-order polynomials; corresponding field
curvatures Rc are 8.4, 10.3 and 13.6 mm, respectively; (c) Transverse component of the field at the same z-positions.

files, our OML can be reconfigured to operate as another
optical component, e.g. as a beam deflector with a linear
field profile or a grating with periodic field profile. We
anticipate that the OML, based on available magneto-
optical bulk and 2D materials, can find wide use in many
optoelectronic technologies in a broad spectral range.
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ADDITIONAL INFORMATION

Supplementary Information accompanies this paper.

I. SUPPLEMENTARY MATERIALS

A. Permittivity tensors for various media

For convenience of the reader, we include the expres-
sions for elements of the dielectric permittivity tensor ε̂
[Eq. (1) in the article] for different materials considered
in the paper.

1. Plasmonic material

A thin film made of silver or gold is represented in the
same way as magnetised plasma26,27

1 + ε⊥ = 1−
ω2
p (ω − i/τ)

ω [(ω − i/τ)2 − ω2
c ]
,

β =
ωc ω

2
p

ω [(ω − i/τ)2 − ω2
c ]
.

(10)

Here, ω is the frequency of light, ωp is the material’s
plasma frequency and τ is the relaxation time. For sil-
ver, ωp = 2321 THz and 1/τ = 5.513 THz45. Assuming
a square-shaped magnetic field profile, as required for fo-
cusing, ωc reads

ωc =
qB0

m∗c

(
1 +

r2

R2
c

)
= ω0M

(
1 +

r2

R2
c

)
, (11)

withM = me/m
∗ = 1 for electrons in metal. Therefore,

the focal length reads

f± = ∓R
2
c

d

ω

ω2
pω0

[(ω ∓ ω0)2 + 1/τ2]2

(ω ∓ ω0)2 − 1/τ2
≈ ±R

2
c

dτ2ω2
p

ω

ω0
, (12)

where the approximate value takes place under realistic
magnetic fields [ω0 = (2π) 28 GHz per 1 T of applied
field], so that both ω and ω0 � 1/τ ; Rc is the curvature
radius of the magnetic field and d is the film thickness.
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Figure 6. (colour online) Cyclotron resonance transition in
graphene w.r.t. different circular polarisation components.
In bottom panels, dotted curves are the derivatives of phases.
Peak positive value of each is a working point for a lens.

2. Ferrite

When working with non-magnetic materials, relative
permeability µ = 1, so that it is omitted and the Eq. (2)
of the article contains only the permittivity tensor ε̂. For
ferrites, the tensor form is traditionally assigned to µ̂,
whereas ε has a scalar value (ε = 15 for YIG). It is equi-
valent to write the paraxial wave equation (2) of the art-
icle as

(
∆⊥ + 2ik∂z

)
~E = −k2

(
εµ̂− Î

)
~E, (13)

where µ̂ has the same form as ε̂ in Eq. (1) in the article.
Let us write down its elements ready for Eq. (2) of the
article29

1 + ε⊥ = ε

[
1− ωM (ωc + iαω)

ω2 − (ωc + iαω)2

]
,

β =
ε ω ωM

ω2 − (ωc + iαω)2
.

(14)

Here, ωM = qMs/mec withMs being the saturation mag-
netisation (ωM = 2π · 49.8 GHz for YIG), α = 2 · 10−4

(tangent loss angle, YIG) and ωc is equivalent to Lar-
mor frequency ωL, because ferrimagnetism in YIG res-
ults from electronic spin, so that Eq. (11) is applicable
withM = 1. In the proximity of the resonance, ω ≈ ω0,
one may obtain expressions identical to Eqs. (6) and (7)
of the main article, with 1/τ = αω0 and A = ωMω0.

3. Graphene

Drude-like model for magnetised graphene is written
in terms of conductivity as follows28,32

σ̂ =

σxx −iσxy 0
iσxy σyy 0

0 0 σzz

 ,

σxx = σyy =
q2|µc|
π~2

i(ω − i/τ)

(ω − i/τ)2 − ω2
c

,

σxy =
q2|µc|
π~2

ωc

(ω − i/τ)2 − ω2
c

.

(15)

Here, µc is the chemical potential and ~ is the reduced
Planck constant. Isotropic component σzz is of no fur-
ther interest. Limiting to intraband transitions only, we
follow the transformation ε̂eff = (4πi/ωd) σ̂ and find the
elements of the effective permittivity tensor to read [com-
pare to Eq. (8) in the article]

1 + ε⊥ =
−2α0|µc|

π~
λ

d

(ω − i/τ)

(ω − i/τ)2 − ω2
c

,

β =
2α0|µc|
π~

λ

d

ωc

(ω − i/τ)2 − ω2
c

.

(16)

Here α0 is the fine structure constant and λ = 2πc/ω
is the free-space wavelength, c is the speed of light. ωc

is given by Eq. (11) with a variable M = meV
2
F /|µc|,

VF being the Fermi velocity. Upon series expansion, the
focal length takes on the form of Eq. (9) of the article.
Corresponding constant is combined with thickness d and
removes it from the expression for f±, Ad = 2α0|µc|/~ =
1.95 · 1019 [eV−1s−2]·|µc| [eV]. An important feature of
graphene-based OML is that only one polarisation com-
ponent is focused resonantly, see Fig. 6. Thus, it allows
for selective focusing of one polarisation or determining
the polarisation content of incident light.

4. Semiconductor

Magnetised semiconductors acquire the tensor form
[Eq. (1) in the article] of dielectric permittivity46, with
the elements identical to those given by Eq. (8) of the
article

1 + ε⊥ = ε∞ −
ε∞ω

2
p (ω − i/τ)

ω [(ω − i/τ)2 − ω2
c ]
,

β =
ε∞ωc ω

2
p

ω [(ω − i/τ)2 − ω2
c ]
.

(17)

For InSb, τ = 3.1 ps, ε∞ = 15.68, ωp = 2.43 THz, and
A = ε∞ω

2
p = 9.26 · 1025 s−2. Upon series expansion, the

focal length takes on the form of Eq. (9) of the article.
Unlike in graphene,M is a constant defined by the pro-
cess used for manufacturing of the sample. In Table I
(main article),M = 50 is assumed. Similarly to ferrites,
both polarisations are focused with different effective per-
mittivities, see Fig. 7.
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Figure 7. (colour online) Cyclotron resonance transition in
InSb w.r.t. different circular polarisation components. In
bottom panels, dotted curves are the derivatives of phases.
Peak positive value of each is a working point for a lens.

5. Array of magnetic nanoparticles

From the Eq. (9) in the article one can see that the
focusing effect declines with the frequency increase. Yet
it is still present at optical frequencies (near-infrared to
visible). A periodic array of ferromagnetic nanoparticles
(e.g. disks or pillars made of TbCo39) allows one to
achieve a certain degree of focusing. Analytical calcu-
lations are very limited in this case, while numerical are
demanding in computation power. We estimate the effi-
ciency of such an array using a simplified full-wave nu-
merical model. In the model, we sweep over the val-
ues of B0 and determine the phase derivative dφ/dB0.
In comparison with InSb (Fig. 7), it turns out to be a
factor of 100 smaller, which is roughly the frequency ra-
tio, ωNIR = (2π) 300 THz for 1 µm wavelength.

6. Astrophysical plasma

In outer space there exist directed microwave sources
such as cyclotron radiation in the magnetosphere of
white dwarfs and pulsars47,48 or maser-like emission in
the atmosphere of stars belonging to asymptotic gi-
ant branch49. Extremely high magnetic fields occur
nearby pulsars and white dwarfs47. These fields are
non-uniform. Hence, low density plasma nearby stel-
lar objects with high magnetic fields may cause wave-
front transformation and affect the perceived position of
the source. Formulae given by Eqs. (10)-(12) are applic-
able, although with caution. Astrophysical plasma is of-
ten approximated as collisionless, τ →∞. Alternatively,
1/τ � ω and ω0. Thus, for quadratic magnetic fields

f± ≈ ∓
R2

c

dω2
p

ω

ω0
(ω ∓ ω0)2, (18)

which may be enough to make the source appear to be
at a different distance. We would like to stress that any
non-uniformity of the magnetic field over plasma gives a
wavefront transformation. In most cases, it would act as
aberrations and increase divergence of light.

B. Image formation by Optical Magnetic Lens

To quantitatively characterise the focusing effect of the
OML, we calculate the standard parameters of the fo-
cused optical beam: position of a new waist of the beam
and the beam size at the waist. First, we compute how
the beam size changes due to OML attenuation. The
inhomogeneous attenuation coefficient a± = log

(
|T±|

)
modifies the size of a new waist w as

1

w2
=

1

w2
0

+

∣∣a′′±∣∣
2R2

c

, (19)

so that the beam size is reduced due to attenuation.
Hence, the lens equation2,50 for Gaussian optical beams
connecting the position of an object s and image s′ (for
real image s′ > 0 ) is modified to read

1

s+ z2
R/(s− f)

+
w/w0

s′
=

1

f
, (20)

where zR = πw2
0/λ is the Rayleight length. Eq. (20)

shows that the image appears closer as compared to the
case when the lens attenuation is zero and w = w0. The
beam size, w′, at the new waist position s′ is

w′ = wf/
√

(s− f)2 + z2
R (21)

and depends on the renormalised beam size w.

C. Fine tuning of the focal length at the resonant
frequency by using two coils

Optical Magnetic Lens can be tuned precisely by con-
trolling the current ratio of two coils, see Fig. 8. Import-
antly, the rate of retuning is limited only by the capabilit-
ies of power supplies that feed the coils. The plots in the
figure were generated by direct integration of Biot-Savart
law. In the center (y = 0 in the left panel), the field is
most uniform, solenoid-like. Thus, an optimal point to
locate the OML is slightly out of the coils, where trans-
verse curvature of the magnetic field becomes profound.
In the right-hand-side panel one may see that different
values of I1/I2 provide different values of Rc.

D. Derivation of the dielectric permittivity tensor
in a non-uniform magnetic field

We derive the tensor of dielectric permittivity of
plasma, ε̂, in a non-uniform magnetic field ~B(r) from
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Figure 8. (colour online) Left panel: distribution of the
magnetic field generated by two coils located at the dashed
lines. Right panel: Transverse distributions of the magnetic
field B/B0 = 1+r2/R2

c given by different current ratios I1/I2
in the coils.

the first principles, namely: (i) microscopic Maxwell’s
equations for the electric and magnetic vectors ~E and
~B; (ii) the Newton-Lorentz equation of motion of charge
carriers in a thin layer; and (iii) the microscopic current
in the form of the Klimontovich distribution. For simpli-
city, we consider the case of electrons in a plasma layer
and a monochromatic wave.

Let us start with the motion of charge carriers in com-
bined non-uniform fields (Cartesian coordinates)

~̈R =
q

m
~E(~R)eiωt +

q

mc

[
~̇R× ~B(~R)

]
, (22)

where ~R(t) is the instantaneous position of the charge
carrier, t is the time, ~E(~R) is the electric field of an incid-
ent light wave of frequency ω, ~B(~R) is the external static
non-uniform magnetic field, c is the speed of light, q and
m are the charge and mass of the particle respectively. In
order to solve it, we expand it into series and thus split
the motion into slow and fast components ~R = ~r + ~ξ, ~r
being a coordinate with a characteristic frequency reach-
ing towards zero, while ~ξ oscillates with a frequency close
to ω. We point out that only the fast component is ra-
diative. The equation of motion for the fast component
reads

~̈ξ =
q

m
~E(~r)eiωt +

q

mc

[
~̇ξ × ~B(~r)

]
, (23)

where dependence of ~r on time can be neglected. With
an ansatz Y = ~̇ξ, this equation reduces to a non-
homogeneous system of differential equations of the first
order Ẏ − ÂY = F (t), where

Â(~r) =

 0 −ωz
c ωy

c

ωz
c 0 −ωx

c

−ωy
c ωx

c 0

 , F (~r, t) =
q

m
~E(~r)eiωt

(24)

and ~ωc(~r) = q ~B(~r)/mc. Finding a general solution by
variation of parameters is straightforward, but tedious,
so here we consider only one specific case when ~B =
(0, 0, Bz) and ωc = ωz

c . Then, the solution for the fast
component of acceleration of charge carriers reads

Ẏ = ~̈ξ =
q

m
eiωt


ω2Ex(~r)+iωωc(~r)Ey(~r)

ω2−ω2
c(~r)

ω2Ey(~r)−iωωc(~r)Ex(~r)
ω2−ω2

c(~r)

Ez(~r)

 , (25)

where one can explicitly see the rise of polarisation mix-
ing. Note that this radiative acceleration of charges con-
tains dependence on the slow macroscopic coordinate ~r.

Let us now turn to the slow component of motion
manifested as particle drift. In non-uniform magnetic
fields, charged particles experience slow drift along the
axis transverse to both the field and the field gradient51.
In non-uniform electric fields, such as the field of a Gaus-
sian beam, particles are subject to ponderomotive drift
from the region of strong field towards weaker field (away
from the beam axis). Thus, the slow part of the equation
of motion reads

~̈r =
q

m
(~ξ ·~∇) ~E(~r)eiωt+

q

mc

[
~̇r × ~B(~r) + ~̇ξ × (~ξ · ~∇) ~B(~r)

]
.

(26)
Here, (~ξ · ~∇) is a scalar differential operator sometimes
called the directional derivative, ~∇ = (∂/∂x, ∂/∂y, ∂/∂z)

and ~ξ = eiωt(x0, y0, z0) is a value of the fast coordinate
that can be found by integrating Eq. (25). To solve the
Eq. (26), one can time-average the terms that depend on
~ξ. Again, a straightforward, but tedious process that we
omit here. An example of such procedure applied to the
electric field term can be found, for instance, in Ref.52.

Consider the non-uniform magnetic field given by
B0p(r) and a Gaussian incident beam | ~E| ∼ e−|r⊥|

2/2w2
0 .

From the time-averaged equation, it is possible to find
the drift velocity. The interplay of electric and magnetic
drift terms melts down to comparing the characteristic
sizes of their profiles; namely, the beam waist size w0 and
the magnetic field curvature Rc. Both when w0 � Rc

and w0 ≈ Rc, drift velocities have similar magnitude and
opposite signs, which results in negligible net drift. If
w0 � Rc, the magnetic field-driven term dominates over
the ponderomotive drift. However, the drift direction
given by the axisymmetric magnetic field is tangential
to the transverse coordinate r⊥. Thus, non-uniformity
of the field drives particles into slow spirals around the
z-axis without critical effects on the concentration.

To check the consistency of this result, we solve the
equations of motion [Eq. (22)] numerically. The ob-
tained numerical solution confirms the analytical result.
In the dimensionless form, the equations depend on a ra-
tio E0/B0. Greatly increasing this ratio does not change
the qualitative behavior of the system, but increases the
area occupied by it (a possible limit by the size of the
sample).
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Having established the absence of charge density dis-
turbance, we finally assume a hydrodynamic current in
the form of Klimontovich distribution

~j = qn~v = qn~̇ξ. (27)

From microscopic Maxwell’s equations, electromagnetic
wave equation follows, with the source term given by the
current in Eq. (27)(

∆− 1

c2
∂2

∂t2

)
~E(~r, t) =

4π

c2
~̇j =

4πqn

c2
~̈ξ. (28)

Using the Eq. (25), we obtain

(
∆ +

ω2

c2

)Ex(~r)
Ey(~r)
Ez(~r)

 =
ω2
p

c2


ω2Ex(~r)+iωωc(~r)Ey(~r)

ω2−ω2
c(~r)

ω2Ey(~r)−iωωc(~r)Ex(~r)
ω2−ω2

c(~r)

Ez(~r)

 ,
(29)

where ωp =
√

4πq2n/m is the plasma frequency. The
right-hand-side of this equation (source term) can be eas-

ily included on the left as a dielectric permittivity ε. The
presence of imaginary cross-terms there indicates that it
has a tensor form. Upon equating corresponding matrix
products, one can find the permittivity tensor to read

ε̂ =

1 + ε⊥ −iβ 0
iβ 1 + ε⊥ 0
0 0 ε‖

 , ε⊥ =
−ω2

p(ω − i/τ)

ω [(ω − i/τ)2 − ω2
c (~r)]

ε‖ = 1−
ω2
p

ω(ω − i/τ)
, β =

ω2
pωc(~r)

ω [(ω − i/τ)2 − ω2
c (~r)]

.

(30)

Here, we included the phenomenological absorption rep-
resented by the relaxation time τ . Thus, we have shown
that under non-uniform magnetic fields the dielectric per-
mittivity tensor for optical beams retains its form while
acquiring a coordinate dependence given by the applied
field.
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