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Semilocal approximations to the Kohn-Sham exchange potential as applied to a metal surface
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Several semilocal exchange potentials usually employed in the framework of density-functional theory are
tested and compared with their exact counterpart, the exchange optimized effective potential (OEP), as applied
to the jellium-slab model of a metal-vacuum interface. Driven by their explicit dependence on the ground-state
density, its gradient, and its kinetic-energy density, the three analyzed semilocal exchange potentials approach
their respective asymptotic limits faster than in the case of the OEP, all of them having an asymptotic scaling
of the form −α e2/z + V∞, with α < 1. Here, we provide the leading analytic asymptotics of the three model
potentials under study, and we find that none of them exhibits the exact OEP slab asymptotics − e2/z. While the
so-called Becke-Roussel potential’s leading asymptote is close to its exact OEP counterpart, the other two model
potentials under study approach a material-dependent positive constant value far into the vacuum, resulting in
considerably overestimated ionization potentials.
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I. INTRODUCTION

With the introduction in 1976 of the optimized effec-
tive potential (OEP) method of Talman and Shadwick [1],
the Kohn-Sham (KS) exact exchange potential Vx(r) of
density-functional theory (DFT) can nowadays be calcu-
lated numerically for an arbitrary many-electron system. The
method is based on the fact that the exact KS exchange energy
functional of DFT is known in terms of the KS orbitals, thus
becoming an implicit energy functional of the ground-state
electron density. This nonexplicit dependence has the con-
sequence that Vx(r) must be found by solving a complicated
integro-differential equation [2]. The exchange-only (x-only)
OEP formulation of Talman and Shadwick was later gener-
alized to include correlation; see, for instance, the reviews
in Refs. [3,4]. The OEP method was originally implemented
in real space to study spherical systems like atoms [1]. More
recently, the method was implemented for periodic solids, by
using plane waves [5,6], and for molecules using Gaussian ba-
sis sets [7,8]. A possible solution to the numerical instabilities
that are present when using a Gaussian basis set was recently
proposed and successfully tested [9].

The computational cost of the x-only OEP method moti-
vates [10], however, the search for simpler model exchange
potentials, beyond the widely used local-density approxima-
tion (LDA) but still sharing some features of the exact Vx(r),
for example, the correct −e2/r asymptotics for finite systems.
Here, we consider a jellium slab and investigate the perfor-
mance of three semilocal model exchange potentials [11–13]
whose asymptotics we compare to those of the corresponding
x-only OEP results. In all cases, full self-consistent conver-
gence has been numerically achieved. The three semilocal

exchange model potentials under study depend not only on
the electron density but also on its gradient and kinetic-energy
density. Indeed, this partial nonlocality brings some important
features of the exact KS exchange potential: (i) the correct
−e2/r asymptotics (for finite systems) in the case of two
model potentials [11,13] and (ii) a reasonable prediction, with
an accuracy of about 30% [14], of band gaps in extended solid
systems in the case of a slightly modified version of one of
the model potentials under study (usually denoted as Modified
Becke-Johnson).

The full nonlocality of the x-only OEP exchange potential
has also been explored to yield the correct asymptotics of
the model and real solid films, which are known to be of the
form −e2/z both in the case of jellium slabs [15] and in the
case of graphene and Si(111) films [16–21]. In the latter case,
the Krieger-Li-Iafrate (KLI) approximation [22] was imple-
mented within the x-only OEP scheme as a way of lightening
the computational cost of full ab initio OEP calculations. The
capability of simplified OEP schemes for the calculation of
semiconductor work functions was also explored with the use
of one of the semilocal exchange model potentials analyzed
here. Seventeen semiconductors were considered, and accu-
rate results were obtained (comparable to those obtained at
the level of the more sophisticated GW approximation) with a
computational cost at the level of LDA/generalized gradient
approximation (GGA) calculations [23]. These results were,
however, debated recently in Ref. [24], an issue that will be
part of our discussion below.

The present work is organized as follows: in Sec. II, we
give a brief account of the main features of the OEP ex-
change potential; in Sec. III, we present our results for three
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semilocal exchange model potentials, as applied to jellium
slabs. Section IV is devoted to the conclusions. In the Ap-
pendix, we explain the details of our analytical derivations
leading to the rigorous jellium-slab asymptotics of the three
semilocal model exchange potentials under study.

II. EXACT KOHN-SHAM EXCHANGE POTENTIAL
AT JELLIUM SLABS

Our calculations are restricted to the jellium-slab model of
a metal surface, where the discrete character of the positive
ions inside the metal is replaced by a uniform distribution of
positive charge (the jellium), expressed as follows:

n+(z) = n̄ θ (−z) θ (z + d ). (1)

Here, n̄ is a constant with the dimensions of a three-
dimensional (3D) density that through the overall neutrality
condition fixes the global electron density, and d is the
slab width. The jellium-slab model of a metal surface, with
vacuum-metal interfaces at z = −d and z = 0, is defined
by just these two external parameters, n̄ and d . Taking the
limit d → ∞, the model reduces to the semi-infinite jellium
model of a metal surface introduced by Lang and Kohn in
their seminal work on DFT as applied to extended solid
systems [25].

The jellium-slab model is invariant under translations in
the x-y plane, so the KS eigenfunctions can be factorized as
follows [26]:

ϕσ
i,k(r) = eik·ρ

√
A

ξσ
i (z), (2)

where ρ and k are the in-plane coordinate and wave vector,
respectively, and A represents a normalization area. ξσ

i (z) are
the normalized spin-dependent eigenfunctions of electrons in
slab discrete levels (SDLs) i (i = 1, 2, . . . ) with energies εσ

i .

They are the solutions of the effective one-dimensional KS
equation (we use atomic units throughout)

ĥσ
KS(z) ξσ

i (z) ≡
[
−1

2

∂2

∂z2
+ V σ

KS(z)

]
ξσ

i (z) = εσ
i ξi(z). (3)

In the x-only scenario considered here, the KS poten-
tial V σ

KS(z) entering Eq. (3) is the sum of two distinct
contributions:

V σ
KS(z) = V H(z) + Vx,σ (z), (4)

where V H(z) is the effective electrostatic Hartree potential
[27],

V H(z) := Vext(z) + VH(z)

= −2π

∫ ∞

−∞
dz′|z − z′|[n(z′) − n+(z′)], (5)

and Vx,σ (z) is the KS exchange potential, which in the OEP
framework is obtained by

V OEP
x,σ (z) = V Slater

x,σ (z) + V 

x,σ (z) + V Shift

x,σ (z). (6)

Explicit expressions for V Slater
x,σ (z), V 


x,σ (z), and V Shift
x,σ (z) for

slab geometry can be found elsewhere [15]. In the widespread
KLI approximation [22], V Shift

x,σ (z) is neglected, so V OEP
x,σ (z)

reduces to V KLI
x,σ (z) := V Slater

x,σ (z) + V 

x,σ (z).

FIG. 1. Self-consistent OEP calculations of the KS exact ex-
change potential of Eq. (6) for rs = 3 and jellium slabs with a number
M of occupied SDLs going from M = 3 (d = 1.53λF ) to M = 14
(d = 6.55λF ). The slab width d has been chosen carefully in such a
way that (i) the filling factor ηM ∼ 1− (kM

F ∼ 1/d) when M is odd and
(ii) the filling factor ηM ∼ 0+ (kM

F → 0) when M is even. The bulk
limit for rs = 3 is represented by a dash-dotted line, and the vacuum
asymptotic limit V OEP

x (z/d � 1) → −1/z is represented by a dotted
curve. In all cases, the right metal-vacuum interface is at z = 0.

The electron density n(z) is obtained as follows:

n(z) = n↑(z) + n↓(z), (7)

where

nσ (z) = 1

4π

Mσ∑
i=1

(
ki,σ

F

)2|ξσ
i (z)|2. (8)

Here, Mσ is the spin-dependent highest occupied slab discrete
level (HOSDL), ki,σ

F = √
2(μ − εσ

i ), and μ is the chemi-
cal potential determined from the overall charge-neutrality
condition ∫ ∞

−∞
[n(z) − n+(z)]dz = 0. (9)

For the scope of the present work, two important ex-
act features of the spin-compensated KS exchange po-
tential V OEP

x (z) := V OEP
x,↑ (z) = V OEP

x,↓ (z), resulting from the
self-consistent solution of Eqs. (3)–(9), are as follows: (i) the
bulk value V OEP

x (bulk) = −kF /π = −(9/4π2)1/3(rs)−1 [28]
and (ii) the asymptotic scaling V OEP

x (z/d � 1) → −1/z [29].
From now on, the absence of the spin index σ in any symbol
will mean that the corresponding magnitude refers to a spin-
compensated jellium slab.

Figure 1 shows self-consistent OEP calculations of the KS
exact exchange potential of Eq. (6) for jellium slabs with
a number M of occupied SDLs that goes from M = 3 to
M = 14. The slab width d has been chosen carefully in such
a way that either (i) a new SDL is just about to be occupied
(high filling factor ηM ; kM

F ∼ 1/d) or (ii) a new SDL has just
been occupied (low filling factor ηM ; kM

F → 0), with the filling
factor ηM being defined as follows:

ηM = μ − εM

εM+1 − εM
> 0. (10)
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FIG. 2. Self-consistent OEP calculations of the KS exact ex-
change potential of Eq. (6) for rs = 3 and jellium slabs with M = 6
and various values of the slab thickness d corresponding to fill-
ing factors that go from η6 = 0+ (d = 2.5435λF ) to η6 = 1− (d =
3.0472λF ). The bulk limit for rs = 3 is represented by a dash-dotted
line, and the vacuum asymptotic limit V OEP

x (z/d � 1) → −1/z is
represented by a dotted curve. As in Fig. 1, z = 0 represents the right
metal-vacuum slab interface.

For a given M, εM is the highest occupied SDL, and εM+1

is the lowest unoccupied SDL, so ηM takes values between
0+ (a new SDL has just been occupied) and 1− (a new SDL
is just about to be occupied). In Fig. 1, a slab thickness
corresponding to high filling factors (ηM ∼ 1−, kM

F ∼ 1/d) is
chosen when M is odd, and a slab thickness corresponding to
low filling factors (ηM ∼ 0+, kM

F → 0) is chosen when M is
even. The result is that when a new SDL is just about to be
occupied (ηM ∼ 1−, kM

F ∼ 1/d), the KS exact exchange po-
tential approaches (i) the bulk limit from below as d increases
and (ii) the expected slab asymptotics −1/z as d decreases.
Instead, when a new SDL has just been occupied (ηM ∼ 0+,
kM

F → 0), the KS exchange potential (i) approaches the bulk
limit from above as d increases and (ii) never approaches the
−1/z asymptotics. The reason for this is that when a new SDL
has just been occupied (ηM ∼ 0+, kM

F → 0), the necessary
condition for approaching the asymptotic regime kM

F z � 1 is
never reached [29].

Figure 2 displays self-consistent OEP calculations of the
KS exact exchange potential of Eq. (6) for jellium slabs with
M = 6 and various values of the slab thickness d correspond-
ing to filling factors that go from η6 = 0+, in which case the
slab asymptotics is never reached, to η6 = 1−, in which case
the slab asymptotics (kM

F z � 1) is nicely reached as z/d � 1.
It is important to address the fact that the remarkable

finite-size effects displayed by V OEP
x (z) in Figs. 1 and 2,

although real, have been somehow overemphasized by our
careful choice of the slab width d . Taking, for instance, Fig. 2,
we observe that considerable finite-size effects occur only for
filling factors over 0.1, which leads us to the conclusion that
in about 90% of all possible situations finite-size effects are
either absent (η6 ∼ 1−) or very small (1 > η6 > 0.1). In any
case, these finite-size effects need to be carefully analyzed, as
they dramatically exhibit a rigorous property of the exact slab
exchange potential.

At this point, it is interesting to point out that the OEP
calculation of the KS exchange potential V OEP

x (z) simplifies
dramatically in the extreme quantum limit of one single oc-
cupied SDL (M = 1), first introduced in Ref. [30]. We can
prove that in this situation V 


x (z) ≡ V Shift
x (z) ≡ 0, so the Slater

potential V Slater
x ≡ 2 εx(z) remains the only surviving contri-

bution in Eq. (6), with εx(z) being the position-dependent
exchange energy per particle [15,31,32]. This analytical ap-
proach, within the x-only OEP framework, to the singly
occupied SDL regime was later generalized to lower dimen-
sions [33] and extended to the domain of time-dependent
DFT [34].

III. SEMILOCAL APPROXIMATIONS

The x-only OEP approach to the calculation of the KS
exchange potential of DFT involves the numerical study of a
complicated integro-differential equation [1]. The difficulty is
rooted in the fact that the exchange energy functional (Fock
integral) on which the OEP method is based is an explicit
functional of the KS orbitals but only an implicit functional
of the ground-state electron density. This is in contrast to
the often used local-density approximations, in which case
we easily obtain the KS exchange (and exchange-correlation)
potential from the knowledge of the electron density. It is then
quite natural to find that several functionals with different
degrees of semilocality (GGA, meta-GGA, etc.) have been
formulated over the years as a way to obtain accurate KS ex-
change (and exchange-correlation) model potentials without
the burden of solving the OEP equations. Here, we analyze
three [11–13] semilocal KS exchange functionals, which we
apply to the metal surface and compare to the KS exact ex-
change potential that we obtain by using the OEP method,
with a particular emphasis on the long-range asymptotic
behavior.

A. Becke-Roussel exchange potential V BR
x,σ (r)

This approximation to the KS exchange potential is based
on the use of the spherically averaged exchange hole of
the 3D hydrogen atom. As such, it should be considered
an approximation to the Slater contribution entering Eq. (6),
neglecting both V 


x,σ (z) and V Shift
x,σ (z). It includes some features

of the KS exact exchange potential in the limits of a uniform
electron system and the hydrogen atom, which will be dis-
cussed in more detail below, and it yields the correct −1/r
asymptotics for finite systems. The so-called Becke-Roussel
(BR) exchange potential is defined by the following set of
equations [11]:

V BR
x,σ (r) = − 1

bσ (r)

[
1 − e−xσ (r) − 1

2
xσ (r)e−xσ (r)

]
, (11)

b3
σ (r) = x3

σ (r)e−xσ (r)

8πnσ (r)
, (12)

xσ (r)e−(2/3)xσ (r)

xσ (r) − 2
= 2

3
π2/3 n5/3

σ (r)

Qσ (r)
, (13)

Qσ (r) = 1
6 [∇2nσ (r) − 2γ Dσ (r)], (14)
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Dσ (r) = tσ (r) − 1

4

[∇nσ (r)]2

nσ (r)
, (15)

tσ (r) =
occ∑
i,k

∣∣∇ϕσ
i,k(r)

∣∣2
. (16)

Here, tσ (r) represents (twice) the spin-dependent kinetic-
energy density, and Dσ (r) is a well-known quantity that is
present in the so-called electron-localization function [35–37]
and also enters the expression of the local curvature of
the exchange hole [38]. A detailed comparison between the
Slater and BR exchange potentials in solids was presented in
Ref. [39]. A test set including semiconductors and insulators
of various types was considered, and it was concluded that
these potentials yield electronic structures that are very similar
to each other. However, in a few cases, as in the strongly
correlated system NiO, the fundamental band gap or magnetic
properties can differ significantly.

Introducing the factorized KS orbitals in Eq. (2) into
Eq. (16) and performing a two-dimensional integral over the
occupied k’s, we obtain

tσ (r) = tσ (z) =
Mσ∑
i=1

(
ki,σ

F

)4

8π

[
ξσ

i (z)
]2

+
Mσ∑
i=1

(
ki,σ

F

)2

4π

[
dξσ

i (z)

dz

]2

. (17)

Now we insert this expression into Eq. (15), and using Eq. (8),
we find

Dσ (r) = Dσ (z) =
Mσ∑
i=1

(
ki,σ

F

)4

8π

[
ξσ

i (z)
]2

+
Mσ∑
i=1

(
ki,σ

F

)2

4π

[
dξσ

i (z)

dz

]2

−
Mσ∑

i, j=1

(
ki,σ

F k j,σ
F

)2

16π2

ξσ
i (z)ξσ

j (z)

nσ (z)

dξσ
i (z)

dz

dξσ
j (z)

dz
.

(18)

Finally, we obtain

Qσ (r) = Qσ (z) = 1

6

{
Mσ∑
i=1

(
ki,σ

F

)2

2π

[
ξσ

i (z)
d2ξσ

i (z)

dz2

+dξσ
i (z)

dz

dξσ
i (z)

dz

]
− 2γ Dσ (z)

}
. (19)

Here, γ is a dimensionless parameter to be determined below
by imposing the constraint that the bulk value of V BR

x,σ (z)
should agree with the bulk value of the Slater potential
V Slater

x,σ (z). This is discussed in detail in the Appendix. It should
be noted already at this point that, in the limit z/d � 1,
all the sums over occupied SDLs collapse to the HOSDL
for each Mσ ; for instance, nσ (z/d � 1) → (kMσ

F )2ξσ
Mσ

(z/d �
1)2/(4π ), with kMσ

F = √
2(μ − εMσ

). This collapse of all
quantities towards the HOSDL is the key to obtaining ana-
lytically the asymptotic limit of V BR

x,σ (z), as we explain below.

FIG. 3. Self-consistent OEP (red) and BR (black) evaluations
of the KS exchange potential for rs = 3 and d = 2λF . For these
values of rs and d , M = 4, and η4 ∼ 0.8. The corresponding V H(z)
and VKS(z) potentials are also represented for comparison. The OEP
bulk limit [V OEP

x (bulk) � − 0.204] is represented by a dash-dotted
line. The vacuum asymptotic limit V OEP

x (z/d � 1) → −1/z is rep-
resented by a dotted curve.

On the other hand, this assumption is not valid for the semi-
infinite geometry (d → ∞ in our slab model), leading, for
instance, to a qualitatively different asymptotic limit of the
exact exchange potential. This was discussed in detail recently
by us in Ref. [40].

It is also worth noting that all quantities involved in the
determination of the jellium-slab BR exchange potential be-
come effective one-dimensional magnitudes after integration
over the in-plane degrees of freedom, as expected. As a con-
sequence, the BR slab exchange potential itself reduces to an
effective one-dimensional magnitude as follows:

V BR
x,σ (z) = −

√
6

[
Qσ (z)

xσ (z) − 2

1

xσ (z)nσ (z)

]1/2

×
[

1 − e−xσ (z) − 1

2
xσ (z)e−xσ (z)

]
. (20)

In Fig. 3, we display a comparison between self-consistent
calculations of V BR

x (z) and V OEP
x (z), together with the cor-

responding V H(z) and VKS(z) potentials. While V OEP
x (z) is

obtained from the self-consistent solution of Eqs. (3)–(6),
V BR

x (z) is obtained, instead, from the self-consistent solution
of Eqs. (3)–(5) by introducing into Eq. (4) the Becke-Roussel
exchange potential V BR

x (z) from Eq. (20) instead of the actual
KS exchange potential from Eq. (6). The effective electro-
static Hartree potential V H(z) is found to be reasonably well
approximated in the present BR model, but the entire KS
exchange potential is considerably deeper in this model, par-
ticularly on the bulk side of the surface. This substantial bulk
discrepancy is simply due to the fact that the BR potential
is an approximation to the Slater potential V Slater

x (z) (see the
Appendix), which is well known to be too negative in the bulk
by a factor of 3/2. Figure 3 also shows that V BR

x (z) is less
affected by Friedel-like oscillations and exhibits a kind of a
kink at z = 0 (right at the metal-vacuum interface). As for the
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FIG. 4. Self-consistent V BR
x (z) (black) and V Slater

x (z) (red) po-
tentials, with the latter being extracted from V OEP

x (z) = V Slater
x (z) +

V 

x (z) + V Shift

x (z). The inset corresponds to the far asymptotic region
showing the crossing of V BR

x (z) and V Slater
x (z). Slab width d = 2λF ,

and rs = 3. The dotted line corresponds to the universal limit −1/z.

vacuum asymptotics, V BR
x (z) displays a scaling of the form

−αBR/z, as in the case of the exact V OEP
x (z/d � 1) → −1/z,

but now with αBR < 1, as shown below.
A comparison between V BR

x (z) and V Slater
x (z) is pro-

vided in Fig. 4. Considering that the interface is at z =
0, Fig. 4 shows that both potentials remain close inside
the slab, which is a consequence of the fulfillment of the
bulk constraint V BR

x (bulk) � V Slater
x (bulk) = −0.306 for rs =

3; however, they differ appreciably in the near-interface vac-
uum region, with the exact (x-OEP generated) Slater exchange
potential being more localized than its Becke-Roussel coun-
terpart. We attribute this feature to the only partial nonlocality
of V BR

x (z), which results in a faster and closer approach to the
correct −1/z asymptotics, as opposed to the exact V Slater

x (z),
whose full nonlocality results in a much slower approach to
the universal −1/z asymptotics. Indeed, the Slater potential
V Slater

x (z) is built from the exact exchange hole, while V BR
x (z)

is constructed from the spherically averaged exchange hole
of the hydrogen atom, which cannot possibly account for the
fact that on the vacuum side of the surface the actual exchange
hole is left behind and far from the electron itself [41,42]. The
result is that the screening capability of the BR exchange hole
is asymptotically too large, and the absolute value of V BR

x (z) is
therefore asymptotically smaller than V Slater

x (z) (see the inset
in Fig. 4), which explains the fact that the coefficient αBR is
ultimately smaller than unity.

In order to obtain a rigorous analytical expression for
the vacuum asymptotics of the BR model potential, we
first look at the asymptotic behavior of the electron density
nσ (z), which we obtain from Eq. (3). Far into the vac-
uum, Eq. (3) can be written as (− ∂2/∂z2 − 2εσ

i )ξσ
i (z) = 0,

whose solution is ξσ
i (z/d � 1) → √

Aσ
i e−zβσ

i , with βσ
i =√−2εσ

i and Aσ
i being a normalization constant along the z di-

rection. We find nσ (z/d � 1) → [kMσ

F ξMσ
(z/d � 1)]2/4π ∼

Aσ
i (kMσ

F )2e−2zβMσ /4π , and we can then derive, as indicated in
the Appendix, asymptotic expansions for tσ (z), Dσ (z), Qσ (z),

FIG. 5. Numerical check of Eq. (21). Self-consistent V BR
x (z)

(red solid line), −1/z (dotted line), and asymptotic expression
V BR

x (z/d � 1) (dashed line) as given by Eq. (21) with αBR = 0.9724.
Slab width d = 1.486λF , and rs = 3, for which M = 3.

and bσ (z) [see Eq. (A10)], and finally,

V BR
x,σ (z/d � 1) = −1

z

[
1 − γ

(
kMσ

F

)2

4β2
Mσ

]1/2(
1 + 1

2zβMσ

)

= −αBR

z
+ O(z−2), (21)

with

αBR =
[

1 − γ
(
kMσ

F

)2

4β2
Mσ

]1/2

, (22)

where (kMσ

F ) = √
2(μ − εσ

Mσ
) and βMσ

=
√

V BR∞ − 2εσ
Mσ

, with

V BR
∞ = 0. Hence, we find a material-dependent scaling coef-

ficient αBR < 1, which is in contrast to the exact universal
asymptotics of the form −1/z. These slight differences in the
asymptotics are shown in Fig. 5 for a slab thickness chosen
in such a way that M = 3 and the HOSDL is far enough from
being just occupied as a way of maximizing the difference
between the displayed curves. Figure 5 also shows that far
enough from the surface into the vacuum the BR model po-
tential V BR

x (z) is very well described by a potential of the form
−αBR/z, with the coefficient αBR given by Eq. (22). The slab
analytical asymptotics of Eqs. (21) and (22) represent one of
the main results of the present work.

As for the kink in the BR exchange potential that is visible
in Figs. 3 and 4, we note that it arises from the factor inside
the square root in Eq. (20). As Qσ (bulk) < 0 and Qσ (z/d �
1) > 0, the quantity Qσ (z) passes through zero at some inter-
mediate z = z0. When this happens, xσ (z0) = 2 to keep finite
V BR

x (z0) in Eq. (20). According to Fig. 11 (see the Appendix),
Qσ (z0) = 0 at z = z0 � 0, right at the metal-vacuum interface.
Hence, assuming that the ratio Qσ (z)/[xσ (z) − 2] remains
finite and compensated at z ∼ z0, the behavior of the BR
model potential right at the interface depends on the product
xσ (z)nσ (z) at z ∼ z0 ∼ 0. Figure 11 shows that xσ (z) increases
with z, while nσ (z) decays with z into the vacuum: we have
checked, however, that the product of these two quantities
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has a local maximum at z ∼ z0 ∼ 0, explaining the presence
of the kink in V BR

x (z), which should therefore be considered
an artifact arising from the use of the exchange hole of the
hydrogen atom as a reference system.

Finally, we note (see Figs. 3 and 4) that V BR
x (z) approaches

the vacuum asymptotics considerably faster than V OEP
x (z). As

already discussed above, this feature is connected to the partial
locality of the BR model potential, which depends explicitly
on the electron density, its gradient, and its kinetic-energy
density. We will see below that this feature is inherited by the
other two semilocal exchange potentials under study, which
are both generated on the basis of the BR model.

B. Becke-Johnson exchange potential V BJ
x,σ (z)

The main drawback of the V BR
x,σ (z) model potential, as ap-

plied to a jellium slab, is the fact that it fits, in the bulk, the
Slater potential, which is wrong by a factor of 3/2. This flaw
was mitigated by the introduction of the Becke-Johnson (BJ)
exchange potential [12], which in our case of translational
invariance in two directions reads as follows [43]:

V BJ
x,σ (z) = V BR

x,σ (z) + C

[
tσ (z)

nσ (z)

]1/2

. (23)

By choosing C = [5/(12π2)]1/2, this model exchange
potential reproduces (for γ = 0.8, see the Appendix)
the uniform-electron-gas limit: V BJ

x,σ (bulk) � V OEP
x,σ (bulk) =

−[9/(4π2)]1/3/rs. As the BR model potential V BR
x,σ (z) simply

approximates V Slater
x,σ (z), the correction term in Eq. (23) can be

interpreted as an approximation to the contribution V 

x,σ (z) +

V Shift
x,σ (z) entering Eq. (6). From Eq. (A6), we find tσ (z/d �

1)/nσ (z/d � 1) → β̄Mσ
+ (kMσ

F )2/2; hence, we obtain

V BJ
x,σ (z/d � 1) → −1

z

[
1 − γ

(
kMσ

F

)2

4β̄2
Mσ

]1/2

+C
[
β̄Mσ

+ (
kMσ

F

)2
/2

]1/2

=: −αBR

z
+ V BJ

∞ , (24)

where β̄Mσ
= √

2(V BJ∞ − εMσ
). Solving for V BJ

∞ , we find

V BJ
∞ = C2

⎡⎣1 +
√√√√1 + 1

C2

(
−2εMσ

+
(
kMσ

F

)2

2

)⎤⎦. (25)

Far into the vacuum, the BJ slab exchange potential ap-
proaches a positive, material-dependent constant V BJ

∞ . Equa-
tion (25) is similar to the expression obtained in the case of
finite systems [24], with the only difference being the presence
of the extra term (kMσ

F )2/2 inside the square root in our case,
which is finite along the z direction (this localization is the
source of the −2 εMσ

contribution) but extended in the x-y
plane.

We display in Figs. 6 and 7 the Becke-Johnson model
potential V BJ

x (z) for several slab widths, together with V BR
x (z)

(in Fig. 6), V OEP
x (z) (in Fig. 7), and the corresponding vacuum

asymptotics (dotted lines). The BJ model potential reproduces

FIG. 6. Upper curves: BJ exchange potential for three values of
the slab width d (solid lines) and their corresponding asymptotics,
Eq. (24) (dotted curves). Lower curves: BR exchange potential for
d = 1.80λF (red solid curve) and its corresponding asymptotics
(dashed curve). rs = 3, and in all cases M = 4, and the metal-vacuum
interface is located at z = 0.

the correct slab bulk limit, but it badly fails to describe the ac-
tual exchange potential on the vacuum side of the surface [44].
The slab ionization potential or work function W , defined as

W i(d ) = V i
∞(d ) − μ, (26)

gives us a complementary piece of information, with i =
OEP, BR, BJ, and RPP (Räsänen-Pittalis-Proetto, see the
next section). Since V OEP

∞ = V BR
∞ = 0, W OEP and W BR

are both equal to −μ, although the respective chemical
potentials are, of course, different. Proceeding in this
way, we obtain W BJ(d = 1.6λF ) ≈ 0.2377, W BJ(d =
1.8λF ) ≈ 0.2606, and W BJ(d = 2.0λF ) ≈ 0.2632, while
W OEP(d = 1.6λF ) ≈ 0.1053, W OEP(d = 1.8λF ) ≈ 0.1410,
and W OEP(d = 2.0λF ) ≈ 0.1450. Taking the x-only OEP

FIG. 7. Becke-Johnson and x-only OEP exchange potentials for
different slab widths d and rs = 3. The top right dotted segments are
the V BJ

∞ corresponding limits, as given by Eq. (25). The dotted line
corresponds to the universal limit −1/z. In all cases, M = 4, and the
metal-vacuum interface is at z = 0.
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work function as a benchmark, the BJ approximation leads to
a severe overestimation of the corresponding work function
by a factor close to 2. This is a direct consequence of the
incorrect asymptotic limit V BJ

∞ �= 0 displayed in Figs. 6
and 7.

The fact that the BJ exchange potential has a system-
dependent limiting value far outside finite systems like atoms
and molecules has some anomalous consequences that were
analyzed in detail in Refs. [45,46]. In particular, it was found
that it has a divergent behavior in the vicinity of nodal sur-
faces, which in turn poses a challenge for the convergence of
numerical solutions of the corresponding KS equations.

In the case of extended systems like bulk solids this
system-dependent constant is not relevant, and the BJ ex-
change potential performs well for a set of selected solids
(C, Si, BN, MgO, CuO2, and NiO), as far as total energies,
electronic structure, electric-field gradients, and magnetic mo-
ments are concerned [47]. An attempt was made in Ref. [48]
to parametrize the BJ semilocal exchange potential for solids
using empirical parameters in order to obtain better agreement
with the exact exchange potential.

C. Räsänen-Pittalis-Proetto exchange potential V RPP
x,σ (z)

In the context of the present jellium-slab system, the RPP
model potential reads

V RPP
x,σ (z) = V BR

x,σ (z) + C

[
Dσ (z)

nσ (z)

]1/2

. (27)

The two main advantages of this model potential, com-
pared to its BJ counterpart, are the following: (i) it reproduces
the correct asymptotic limit −1/r for any finite N-electron
system like atoms and molecules, and (ii) it is exact for all
one-particle systems and not only for the hydrogen atom.
In addition, if Dσ (r) is taken as suggested in Eq. (7) of
Ref. [13] instead of Eq. (18) above, the exchange potential
becomes gauge invariant, which is particularly valuable when
finite systems are subject to electric or magnetic fields. This
model potential was successfully tested for a variety of finite
systems, including atoms, molecules, and atomic chains [49].
More recently, the RPP exchange functional has shown very
promising outputs when compared with other several semilo-
cal functionals in a large-scale DFT study on the influence of
the exchange-correlation functional in the calculation of elec-
tronic band gaps of solids [50]. A version of the RPP model
potential valid for low-dimensional systems has also been
suggested, successfully tested, and proven to be very accurate
in comparison with the corresponding OEP low-dimensional
exchange potential [51].

Our main interest here is to see how V RPP
x,σ (z) differs from

V BJ
x,σ (z) in the vacuum asymptotic limit for our present jellium-

slab model of a metal surface. From Eq. (A7), we obtain

V RPP
x,σ (z/d � 1) → V BR

x,σ (z/d � 1) + C√
2

kMσ

F

= −αBR

z
+ V RPP

∞ , (28)

with V RPP
∞ = CkMσ

F /
√

2. While for finite systems the RPP ex-
change potential goes asymptotically towards the correct limit

FIG. 8. RPP and BJ exchange potentials for slab widths d =
1.60λF , 1.80λF , and 2.00λF . Dotted lines corresponds to the RPP
asymptotic expression in Eq. (28). rs = 3, and M = 4, except for the
slab width d = 2; λF in the RPP approximation, which has M = 5.
In all cases, the metal-vacuum interface is at z = 0.

−1/r, in the case of a jellium slab we obtain a finite correction
term, reflecting once more the hybrid finite/extended spatial
character of the slab geometry. Asymptotically (z/d � 1), the
BJ and RPP model potentials both tend to a positive material-
dependent constant, which in the case of the RPP potential
is proportional to kM

F . In the particular case of a slab width
corresponding to the HOSDL being just occupied (ηM ∼ 0+,
kM

F → 0), V BR
x (z) and V RPP

x (z) both yield the correct −1/z
slab asymptotics, while V BJ

x (z) still yields a positive constant
far into the vacuum.

The RPP model potential V RPP
x (z) is displayed in Figs. 8

and 9, together with V BJ
x (z) (in Fig. 8) and V OEP

x (z) (in
Fig. 9). Both the BJ and RPP models reproduce, by
construction, the correct bulk limit. On the other hand,
they both fail to describe the actual exchange potential

FIG. 9. RPP (solid lines) and x-only OEP exchange (dashed
lines) potentials for different slab widths d . The dotted line corre-
sponds to the universal limit −1/z. The top right dotted segments
are the V RPP

∞ corresponding limits. rs = 3, and in all cases, the metal-
vacuum interface is at z = 0.
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FIG. 10. Self-consistent V OEP
x (z), V BR

x (z), V BJ
x (z), and V RPP

x (z)
potentials. The dotted line corresponds to the universal limit −1/z.
The top right dotted segments are V RPP

∞ = 0.018 and V BJ
∞ = 0.142.

rs = 3, and d = 2.5785λF . In all cases, M = 6, and the metal-
vacuum interface is at z = 0.

on the vacuum side of the surface, although the devi-
ation is not very large in the case of the RPP model
potential, and the work functions are therefore closer to
(although still too large) their OEP counterparts (quoted
above): W RPP(d = 1.6λF ) � 0.1345, W RPP(d = 1.8λF ) �
0.1365, and W RPP(d = 2.00λF ) � 0.1286.

A shoulder in V RPP
x (z) is visible for d = 2λF . The rea-

son for this is that for this particular slab width the fifth
SDL is just occupied (M = 5 and η5 small), so that k5

F is
small (k5

F ∼ 0.042), and therefore, large distances are needed
to reach kF z � 1 and the correct asymptotics, as given by
Eq. (28). This is comparable to the shoulder exhibited (also
for d = 2λF ) by V OEP

x (z), which is visible in Fig. 2 for small
values of η6.

As a sort of preliminary graphical conclusion, we display
in Fig. 10 the three model potentials under study, together
with their OEP counterparts for a slab with d = 2.5785λF .
For this particular jellium slab, V OEP

x (z) somehow interpolates
between V BJ

x (z) and V RPP
x (z) in the bulk (and in the neighbor-

hood of the interface) and V RPP
x (z) far into the vacuum. V BJ

x (z)
clearly fails to describe V OEP

x (z), except in the bulk region.
Concerning V BR

x (z), it fails badly in the bulk, but it approaches
the correct −1/z asymptotics with considerable accuracy (αBR

is, in most cases, quite close to unity).

IV. CONCLUSIONS

We have carried out a numerical and analytical study of
the asymptotic behavior, the satisfaction of exact constraints,
finite-size effects, and the work functions of three semilocal
approximations of the KS exchange potential of DFT, as ap-
plied to the jellium-slab model of a metal-vacuum interface,
and we have analyzed the performance of these three model
potentials by taking the exchange OEP as a reference.

In the case of the Becke-Roussel model, we have found
V BR

x (z/d � 1) → − αBR/z, with αBR < 1 but in most cases
close to unity. Regarding the widespread Becke-Johnson
model potential, we have found that V BJ

x (z/d � 1) →
− αBR/z + V BJ

∞ , with V BJ
∞ > 0, which leads to a considerable

overestimation of the work function, typically by a factor of
2. Similar asymptotics are found for the RPP model potential:
V RPP

x (z/d � 1) → − αBR/z + V RPP
∞ , but now with V RPP

∞ (also
positive) being considerably smaller than in the case of the
BJ model potential. As a result, the RPP model potential is
asymptotically closer (than its BJ counterpart) to the actual
(OEP) KS exchange potential. Some finite-size features of the
OEP are also exhibited by the RPP model potential, so we
conclude that its performance, for jellium slabs, is superior
to the performance of the other model potentials under study,
and we suggest, therefore, its use in the ab initio study of the
electronic structure of real metal surfaces. In addition, consid-
ering the hybrid dimensionality of the slab geometry, which is
finite along z but extended in the perpendicular plane, we also
suggest the use of the RPP semilocal exchange potential both
for bulk and finite systems alike.

A natural follow-up of this work will be to explore the
properties of these semilocal exchange potentials for the semi-
infinite geometry, considering that in this case, due to its
continuous energy spectrum, the asymptotic collapse towards
the highest occupied slab discrete level employed here is not
valid anymore. Work is in progress along this line of research.

This work should also serve as a basis to further include
the correlation contribution to the surface asymptotics. This
represents a delicate issue for energy functionals due to LDA
error cancellations [52], which means that improvements in
the exchange functional are not beneficial unless they are
accompanied by improvements in the correlation functional
at the same level of approximation. This is not the case, how-
ever, in general, for the exchange-correlation potential outside
a metal surface since neither the LDA exchange potential
nor the LDA correlation potential contributes to the actual
asymptotics.
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APPENDIX: DERIVATION OF ASYMPTOTIC
EXPRESSIONS FOR xσ (z) AND bσ (z)

1. The vacuum limit xσ (z/d � 1) and the bulk limit
xσ (z → −∞)

We derive here the asymptotics of Eq. (13) for a jellium-
slab geometry. First of all, we rewrite Eq. (13) as follows:

xσ (z) = − 3

2
ln

[
2π2/3

3

n5/3
σ (z)

Qσ (z)

xσ (z) − 2

xσ (z)

]
, (A1)

and we then look for its asymptotic solution xσ (z →
∞) =: xσ (∞). Considering that Qσ (∞) ∼ nσ (∞), then
n5/3

σ (∞)/Qσ (∞) ∼ n2/3
σ (∞), which goes exponentially to

zero, making the argument inside the logarithm function ar-
bitrarily small. Accordingly, xσ (∞) → ∞, and the factor
[xσ (∞) − 2]/xσ (∞) → 1. By keeping only the leading terms,
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FIG. 11. Numerical solution of Eq. (A1) (dotted line) and its
asymptotic limit given by Eq. (A2) (red solid line) for a slab with
rs = 3 and d = 1.48λF . The inset shows the curve xσ (z) in the region
close to the metal-vacuum interface (referred to the left vertical axis)
and xσ (z)nσ (z) (referred to the right vertical axis).

we find

xσ (z → ∞) → − 3
2 ln

[
n2/3

σ (z → ∞)
]

→ − 3
2 ln[exp (−4zβσ /3)] + B = 2zβσ + B,

(A2)

which proves that xσ (z) grows linearly with z in the slab
asymptotic region; B < 0 is a constant term dependent on
the normalization parameter Aσ

i . We show in Fig. 11 how the
numerical solution of Eq. (A1), which is valid for all values
of z, coincides with the solution of Eq. (A2) when z is far into
the vacuum.

For completeness, we now discuss the bulk solution (z →
−∞; see Ref. [28]) of Eq. (A1), which leads to the determi-
nation of the parameter γ . From Eq. (16) and using 3D plane
waves, we arrive at tσ (bulk) = (3/5)(6π2)2/3nσ (bulk)5/3.
From Eq. (15), Dσ (bulk) = tσ (bulk), and introducing this into
Eq. (14), we find Qσ (bulk) = −(γ /5)(6π2)2/3nσ (bulk)5/3.
Calling xσ (bulk) ≡ x̄σ , the bulk version of Eq. (13) reduces
to

x̄σ e−2x̄σ /3

x̄σ − 2
= − 10

3(6π )2/3

1

γ
. (A3)

This equation defines γ , once x̄σ is known. For this, the
physical constraint V BR

x,σ (bulk) = V Slater
x,σ (bulk) is imposed. In-

troducing this constraint and using Eq. (11), we find after
some cancellations

1

x̄σ e−x̄σ /3

(
1 − e−x̄σ − x̄σ

2
e−x̄σ

)
= −3

2

(
3

4π2

)1/3

. (A4)

By solving this equation numerically for x̄σ , we find that
x̄σ � 1.104; this is represented in Fig. 11 by a horizontal

arrow on the vertical axis of the inset. From Eq. (A3), we find
γ � 0.8 [11]. Interestingly, the determination of the parameter
γ is independent of the particular value of rs, i.e., the electron
density.

An analytical representation of the function xσ (r) that is
valid for all distances can be found in Ref. [53]. In the present
work, we have solved Eq. (A1) directly in a numerical way,
without resorting to any analytical approximation.

2. The limit bσ (z/d � 1)

We analyze here the asymptotic solution of Eq. (12), which
for a jellium-slab geometry can be written as follows:

bσ (z) = xσ (z)

[8πnσ (z)]1/3
e−xσ (z)/3

= 1

2

(
2

3

)1/2 n1/2
σ (z)

Q1/2
σ (z)

xσ (z). (A5)

Equation (A1) has been used to pass from the first to the sec-
ond line of Eq. (A5). We already have asymptotic expansions
of nσ (z) and xσ (z), but we still need to obtain the asymptotic
expansion of Qσ (z). The first step to achieve this goal is to
evaluate Eqs. (17)–(19) in the limit z/d � 1. By restricting
the sums over the SDL index i to the HOSDL, i.e., to i = Mσ

for each spin component, we easily find

tσ (z/d � 1) →
[
β2

Mσ
+

(
kMσ

F

)2

2

]
nσ (z/d � 1), (A6)

Dσ (z/d � 1) →
(
kMσ

F

)2

2
nσ (z/d � 1), (A7)

and

Qσ (z/d � 1) → 1

6

[
∂2

∂z2 − γ
(
kMσ

F

)2
]

nσ (z/d � 1). (A8)

Inserting the asymptotic density into Eq. (A8), we obtain

Q1/2
σ (z/d � 1)

→
(

2

3

)1/2

βMσ

[
1 − γ

(
kMσ

F

)2

4β2
Mσ

]1/2

n1/2
σ (z/d � 1). (A9)

Now we have everything we need for the evaluation of
Eq. (A5) in the asymptotic regime. We find

bσ (z/d � 1) → z

[
1 − γ

(
kMσ

F

)2

4β2
Mσ

]−1/2(
1 − 1

zβMσ

)
.

(A10)
It should be noted that Eq. (A10) includes the leading and
the next-leading contributions to bσ (z/d � 1), with the later
corresponding to the last factor. This next-leading contribu-
tion comes from not approximating the ratio [xσ (z/d � 1) −
2]/xσ (z/d � 1) by unity.
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