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Local orbital formulation of the Floquet theory of projectile electronic stopping
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A recently proposed theoretical framework for the description of electronic quantum friction for constant-
velocity nuclear projectiles traversing periodic crystals is here implemented using a local basis representation.
The theory requires a change of reference frame to the projectile’s, and a basis set transformation for the target
basis functions to a “gliding basis” is presented, which is time-periodic but does not displace in space with
respect to the projectile, allowing a local-basis Floquet impurity-scattering formalism to be used. It is illustrated
for a one-dimensional single-band tight-binding model, as the simplest paradigmatic example, displaying the
qualitative behavior of the formalism. The time-dependent nonorthogonality of the gliding basis requires care in
the proper (simplest) definition of a local projectile perturbation. The Fermi level is tilted with a slope given by
the projectile velocity, which complicates integration over occupied states. It is solved by a recurrent application
of the Lippmann-Schwinger equation, in analogy with the previous nonequilibrium treatment of electron ballistic
transport. Aiming towards a first-principles mean-field-like implementation, the final result is the time-periodic
particle density in the region around the projectile, describing the stroboscopically stationary perturbation cloud
around the projectile, out of which other quantities can be obtained, such as the electronic stopping power.
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I. INTRODUCTION

The study of energetic nuclei as projectiles shooting
through matter has been of great interest for over a century
[1,2]. An understanding of the emergent stopping phenomena
(as the charged particles slow down in matter) from such pro-
cesses is of significant applied interest in a variety of contexts,
such as nuclear [3], aerospace [4], and medical [5]. It is also
of fundamental interest, as a canonical problem of quantum
systems strongly out of equilibrium.

Electronic stopping processes have been simulated over
the years using various theoretical frameworks and approx-
imations. From the theoretical side, there are two important
paradigms for describing electronic stopping in the non-
relativistic limit. Lindhard’s linear response theory [6,7] is
applicable to any host material and is accessible to first-
principles theory [8]. However, it assumes weak effective
interaction between the projectile and the target electrons,
which is a very limiting approximation, especially at low
velocities [9]. A fully nonlinear theory was proposed for the
homogeneous electron liquid, including first-principles cal-
culations, by Echenique, Nieminen, and Ritchie for the low
projectile-velocity v → 0 limit [10]. It was later extended to
finite v [11–14], and it was also generalized to any (non-
homogeneous) metal, still for the low-v limit [15]. Both the
linear-response and jellium paradigms for electronic stopping
assume a constant-velocity projectile. It is a very extended
approximation in the community given the fact that the large
projectile mass (as compared with the electronic) results in

a reduction of velocity which is barely appreciable in the
nanoscale.

Explicit simulations of the electronic stopping processes
using time-dependent tight-binding [9] and time-dependent
density-functional theory (TDDFT) are the state-of-the-art
techniques for the treatment of nonlinear stopping in materials
beyond simple metals [16–34]. However, these calculations
remain computationally expensive, since the projectile prop-
agates across a large simulation box containing as much
host material as possible, in periodic boundary conditions. In
addition to guaranteeing convergence with system size (min-
imizing the effect of the multiple replicas of the projectile),
these simulations rely on the heuristic ascertaining on having
reached a stationary state.

A recent work introduced a theoretical framework which
allows going beyond both the linear-response and jellium
approximations in the direct characterization of the stationary
state for the study of electronic stopping processes [35]. It
is based on exploiting a discrete translational invariance in
space-time for ion projectiles moving at constant velocity
along periodic trajectories in crystals. When changing refer-
ence frame to the one moving with the projectile, the problem
becomes time periodic and the theory can be formulated using
Floquet theorem [36,37]. It becomes a time-periodic general-
ization of the time-independent problem faced when doing the
same change of reference frame in jellium [10], now allowing
for any periodic potential, and therefore any crystalline solid
of whatever character and chemistry, no longer limited to
ideal metals. The conservation of single-particle (Kohn-Sham
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particle) energy in the scattering processes (in the projectile
frame) in the jellium case now becomes Floquet quasienergy
conservation [35].

A natural route towards a first-principles implementation
of the Floquet theory of electronic stopping is using local
functions as basis, for reasons analogous to those that gave
very successful local-function implementations of electronic
ballistic transport in the nanoscale [38–40], using scattering
theory by the means of Green’s functions and Dyson’s equa-
tion. Here we propose the main conceptual ingredients for
such an implementation of Floquet stopping theory, setting
up the paradigm in terms of the simplest possible model: a
one-band, one-dimensional (1D) tight-binding model, with a
local perturbation moving at a constant velocity along the
system, as established in Sec. III.

The first difficulty is encountered with the local functions
of the basis moving past the projectile (at the origin) at a
velocity of −v. This is addressed by introducing a “gliding”
basis transformation to time-periodic but immobile (in space)
functions (Sec. IV). The adequate description of a projectile
local perturbation is presented in Sec. III B, and the Floquet
scattering problem is then solved in a Green’s function for-
malism via the Dyson equation (Sec. V).

An independent-particle formalism is assumed, thinking
of a mean-field-like implementation such as Kohn-Sham
TDDFT. Single-particle occupation in this nonequilibrium
setting is addressed in Sec. VI A. Finally, the time-periodic
perturbed particle density n(x, t ) is obtained for the stationary
solution around the projectile—actually, stroboscopically sta-
tionary: invariant when looking at it at times separated by the
relevant time period.

The electronic stopping power Se has been the key prop-
erty in comparison with experiments, and it is also important
for radiation-damage modeling at different length and time
scales. It has been conventionally obtained from single-
particle properties [10–14], namely, the scattering amplitudes
and corresponding energy excitations for the individual scat-
tering processes. Notwithstanding its being a remarkably
successful approximation, obtaining the stopping power in
terms of the force on the projectile appears as a more suitable
definition, amenable to exact treatment under a wider scope of
levels of theory. That force can be extracted from the particle
density n(x, t ), as appears in Sec. VI B. Scattering amplitudes
are also computed in the appendices.

II. THEORETICAL FRAMEWORK

Consider a projectile moving at constant velocity v = vv̂ in
the bulk of a crystalline solid. The constant-velocity projectile
is a very extended assumption in most theoretical approaches
to electronic stopping, in both linear and nonlinear response
theories, albeit not all, since there is both theory and sim-
ulation work allowing for dynamical slowing down of the
projectile (see, e.g., Ref. [41] for strongly coupled plasmas,
or TDDFT simulations with Ehrenfest dynamics, as in ref-
erences within Ref. [42]). Constant velocity breaks global
energy conservation, the slowing down of the projectile of
the real situation being captured by the energy uptake of
the electrons to a good approximation for heavy projectiles.
Following convention, we still call it the electronic stopping

FIG. 1. Change of reference frame from the laboratory reference
frame (LRF) (a) to the projectile reference frame (PRF), (b) results in
a time periodic H (r, t ) with period τ = a/v, where a is the repetition
length along the trajectory, and v is the projectile velocity.

problem and associated processes, in spite of the projectile
not slowing down.

If the motion is along a spatially periodic trajectory of
wavelength a, the group of discrete translations displacing
simultaneously in space by na and in time by −nv/a, for
any n ∈ Z , leaves the Hamiltonian invariant. This symmetry in
space-time can be exploited [35] through the application of the
Galilean transformation G : r = r′ − vt [primed/unprimed
indices indicating laboratory/projectile frame (LRF/PRF), re-
spectively] putting the projectile at rest in the projectile frame.
The Hamiltonian then takes the form

H (r, t ) = H0(r + vt ) + VP(r), (1)

where H0 is the Hamiltonian for the crystal structure in the
PRF. We consider the crystal nuclei at crystalline ideal po-
sitions for the full consideration of the symmetry affecting
the electrons, a widely used approach for exploiting Bloch’s
theorem in electronic structure. VP(r) is a local scalar poten-
tial representing the (now static) projectile. Given the spatial
periodicity a along the projectile trajectory, H (r, t ) is time-
periodic with period τ = a/v. Fig. 1 illustrates the boost,
showing how the target atoms move past the projectile. In a
mean-field setting (such as KS-TDDFT), the projectile po-
tential itself (now dressed with the Hartree, exchange and
correlation components) can also dependent on time, VP(r, t ).
The key point, however, is that, if time-dependent at all, it
will be generally expected to be time periodic in the long time
limit, since it depends on the time-periodic perturbed density.

Following [35], the electronic stopping problem can then
be addressed as a time-periodic scattering problem for the
single-particle states. It represents a generalization to any ve-
locity and any crystal structure of the nonlinear jellium theory
of Ref. [10]. Its validity is obvious for noninteracting parti-
cles. For TDDFT this statement requires further support. It is
known from the exact nonlinear theory in the limit of zero ve-
locity [15] that the evaluation of the electronic stopping power
Se demands a dynamical exchange-correlation term in addi-
tion to the one coming from single-particle scattering events.
On the other hand, the particle density n(r, t ) as obtained
directly from the solution of the effective single-particle KS-
TDDFT problem (in this case a scattering problem) can be
exact for the exact XC functional and proper consideration of
the initial conditions [43]. In our statement, electronic stop-
ping problem refers to the calculation of the fully nonlinear
density response, as opposed to using single-particle scatter-
ing events for the calculation of Se. The focus of this paper
is on obtaining n(r, t ). It can be further shown with ample
generality that Se can be obtained from the force acting on
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the projectile, as a known functional of that density. This is
discussed at certain length in general for Ehrenfest dynamics
in, e.g., Refs. [44,45], and for the electronic stopping problem
in particular in Ref. [46]. The full implementation of a Floquet
TDDFT stopping theory with explicit calculation of Se will be
the focus of future work, which will also include the consid-
eration of caveats already discussed for Floquet TDDFT in
general [47]. In this work, we focus on setting up the key
formalism on a simpler tight-biding model, which already
illustrates key new concepts and perspectives.

Floquet’s theorem in this context implies that there are
time-dependent solutions of the form

�nk(r, t ) = e−iεn (ki )t/h̄�nk(r, t ), (2)

which represent the stroboscopically stationary solutions,
where �nk(r, t ) = �nk(r, t + τ ) are the Floquet modes, i.e.,
the eigenstates of the Floquet Hamiltonian H = H − ih̄∂t

(∂t ≡ ∂/∂t). They are labeled by the quasimomentum k of the
incoming unperturbed Bloch state of the host crystal (which
becomes Floquet-Bloch in the PRF) with energy En(k) (n
being the band index), and

εn(k) = En(k) − h̄k · v + mv2/2 (3)

is the corresponding Floquet quasienergy for a single electron
of mass m.

As usual in scattering theory, the asymptotic form of the
scattering Floquet modes can be expressed

�nk(r, t ) ∼ ψnk(r, t ) +
∑
m,k f

Snk,mk f ψmk f (r, t ), (4)

where m, quasimomenta k f and scattering amplitudes Snk,mk f

are determined with scattering theory techniques, including
quasienergy conservation and outgoing boundary conditions.
Throughout the paper, we will use capital letters to distin-
guish the perturbed wavefunctions from the corresponding
unperturbed ones, as in Eq. (4) above, where ψnk(r, t + τ ) =
ψnk(r, t ) is the unperturbed Floquet-Bloch mode. For more
details on the scattering theory for the Floquet-Bloch states,
we refer the reader to Refs. [35,48].

III. MODEL

The practical implementation of the above theory based
on a local basis set is tried out in the following. A simple
tight-binding (TB) model in one dimension (1D) serves the
purpose of presenting the key concepts and formalization
needed, and it serves as a paradigmatic example of the quali-
tative physics of the problem. In particular, once the reference
frame is changed to the projectile’s, the local basis functions
for the target, which are static in the LRF, are neither static
nor time-periodic, but displace with velocity −v, and as such,
are not suitable for solving the Floquet scattering problem. To
address this issue, we propose a basis set transformation to a
set of time-periodic basis states (with the same period τ ) in
Sec. IV for the 1D model, which is introduced here first (for
the generalization to 3D see Appendix A).

A. One-band moving tight-binding model

In the laboratory frame, with one atom per unit cell and
one orbital per atom, the Hilbert space �′ is spanned by the
orthonormal basis set given by the functions

φ′
μ(x′) = φ′(x′ − R′

μ) = 〈x′|φ′
μ〉, μ ∈ Z,

i.e., atomic orbitals with shape φ′(x′), centered at the lattice
vectors R′

μ = μa. Prime indices indicate objects in LRF as
stated in Sec. II. Assuming only nearest-neighbor hopping of
electrons (γ ) between lattice sites and on-site energy of ε0, the
Hamiltonian can be written as

H ′
0 = ε0

∑
μ

|φ′
μ〉 〈φ′

μ| − γ
∑

μ

(|φ′
μ〉 〈φ′

μ+1| + H.c.), (5)

with H.c. indicating the Hermitian conjugate. The eigenvalues
and eigenstates of this time-independent Hamiltonian satisfy-
ing H ′

0 |ψ ′
k〉 = E (k) |ψ ′

k〉 are

E (k) = ε0 − 2γ cos (ka), (6)

|λ′
k〉 = 1√

N

∑
μ

eikaμ|φ′
μ〉, (7)

labelled by the crystal momentum k, conserved in the un-
perturbed model. N is the number of unite cells in periodic
boundary conditions. The quantum number k is not primed,
since it unequivocally labels the Bloch states in both LRF and
PRF.

The Bloch waves in the real-space representation and with
explicit time dependence in the energy phase,

λ′
k (x′, t ) = e−iE (k)t/h̄ 1√

N

∑
μ

eikaμφ′
μ(x′), (8)

can be transformed to the PRF via G as [49]

λk (x, t ) = e−i mv
h̄ xe−i[E (k)+ 1

2 mv2]t/h̄ 1√
N

∑
μ

eikaμφ̃μ(x, t ), (9)

where the moving basis functions in PRF are defined as

〈x|φ̃μ(t )〉 = φ̃μ(x, t ) ≡ φ′
μ(x + vt ). (10)

Note that in this frame the lattice, the crystalline potential,
the basis functions and the electrons described by Bloch func-
tions are all displacing with velocity −v. The Bloch waves
transformed through G have the Floquet form λk (x, t ) =
e−iε(k)t/h̄ψk (x, t ), where ψk (x, t ) is the time-periodic Bloch-
Floquet mode with quasienergy

ε(k) = E (k) − h̄kv + mv2/2. (11)

The Bloch-Floquet modes can be immediately expressed by
comparing Eq. (9) to the Floquet form, obtaining

ψk (x, t ) = e−ikvt e−imvx/h̄ 1√
N

∑
μ

eiμkaφ̃μ(x, t )

= e−ikvt 1√
N

∑
μ

eiμkaφμ(x, t ). (12)

In the above expression, the phase eimvx/h̄ was absorbed into
the local basis φ(x, t ), defining the new basis set as the set
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defined by

φμ(x, t ) = e−imvx/h̄φ̃μ(x, t ) ∀μ ∈ Z. (13)

The time-periodic function of Eq. (12) defines a Floquet
mode, which is an eigenstate of the Floquet Hamiltonian
H(x, t ) = H (x, t ) − ih̄∂t with eigenvalues ε(k) of Eq. (11),
where H0(x, t ) is the real-space representation of the TB
Hamiltonian of Eq. (5), transformed into the moving frame.
This is true by construction, but can also be explicitly verified
(see Appendix B). This simple result is key to the solution of
the Bloch-Floquet scattering problem: by knowing the unper-
turbed Bloch-Floquet modes, the allowed asymptotic states
of the single-particle Bloch-Floquet states are known from
the start, since they have to satisfy quasienergy conservation
[35,48].

B. Projectile potential

The system to be studied is that of a constant velocity
projectile moving along the 1D crystal, A simple tight-binding
representation of such a potential in the LRF would be

VP =
⎧⎨
⎩

|φ′
μ〉εp〈φ′

μ|, t ∈ [μτ, (μ + 1)τ )

0, t /∈ [μτ, (μ + 1)τ )
, (14)

which represents a constant on-site shift by εp on the site
the projectile is on, for the duration of its passage, i.e., the
period τ = a/v, after which it shifts to the adjacent site on the
right (left) if the projectile velocity v is positive (negative). An
alternative procedure to define the projectile potential operator
directly on the projectile reference frame is discussed below
(in Sec. IV A).

IV. GLIDING BASIS

We have been able to state the Floquet modes of the un-
perturbed system in terms of the original tight-binding basis
even though the basis functions are not periodic themselves.
This was because we were using the Bloch functions directly,
which are quite close to the Floquet modes. The scattering
formalism used, will need a local basis when dealing with the
Floquet modes for the total Hamiltonian and the local pertur-
bation induced by the projectile. The fact that the individual
basis functions pass by the projectile once, never to return,
makes them quite inconvenient.

A straightforward solution to that problem is the relabelling
of the basis functions every period, as

ξμ(x, t ) = φμ+n(x, t ), (15)

where we have defined n from t = nτ + δt , and δt = t
mod τ . It can be also expressed as

ξμ(x, t ) = φμ(x, δt ).

The ξμ basis functions are time-periodic with period τ , as
intended, and are localized in space on the same lattice as
the original one, but are now statically defined in the PRF.
However, the time dependence is markedly discontinuous,
with the basis function continuously moving leftwards (for
v > 0) during a period, at the end of which it performs a
sudden jump rightwards to start again. Such behavior will be

FIG. 2. Moving original tight-binding basis orbitals (dotted
lines) and gliding basis function at site μ = 0, for four time snapshots
(continuous line) within a period. The red line indicates x = 0, the
center of the projectile in the PRF.

hard to converge in the Fourier expansions to be performed
below.

A transformation to a basis with smoother time dependence
is proposed here for numerical convenience, each basis func-
tion gradually morphing onto its neighbor on the left (right)
for v > 0 (v < 0), so that the label reassignment happens
smoothly. Such procedure gives rise to the time-periodic,
nonorthogonal gliding basis illustrated in Fig. 2, which is
also defined on the static lattice in PRF, and which can be
expressed as

ξμ(x, t ) = N (t )[ f (δt ) φμ+n(x, t )+ f (δt−τ ) φμ+n+1(x, t )]
(16)

for δt ∈ [0, τ ], and t = δt + nτ , and with

N (t ) = [| f (δt )|2 + | f (δt−τ )|2]−1/2

defined as the normalization at all times. It can also be written
as

ξμ(x, t ) = N (t )[ f (δt ) φμ(x, δt )+ f (δt−τ ) φμ+1(x, δt )].
(17)

The function f (t ) which defines the basis transformation,
should be nonzero only in the [−τ, τ ) interval,

f (t ) =
{

f̃ (t ), t ∈ [−τ, τ )
0, t /∈ [−τ, τ )

.

Although it is not necessary, it is numerically convenient to
ensure continuity (and hopefully smoothness) of the function
at t = ±τ . Figure 2 illustrates the evolution of such a basis
function. Note the use of φ(x, t ) from Eq. (13) in this defini-
tion.

Since the basis given by the set {ξμ(x, t ),∀μ ∈ Z} spans
the same space as spanned by {φμ(x, t ),∀μ ∈ Z}, converged
results are independent of the gliding transformation used,
the shape of f (t ) therefore representing a gauge freedom,
which can be exploited for practical considerations such as
maximising smoothness for Fourier transform truncation or
simplicity in the equations. Examples of f̃ (t ) can be found in
Appendix C. The numerical calculations in this paper are done
using the gauge function f̃2(t ) in Eq. (C1), which ensures the
continuity of the gauge function as well as of its first deriva-
tive, while the time-discontinuous transformation giving the
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simplest formalism [of Eq. (15)] is given by the gauge step
function of f̃4(t ) in Eq. (C1).

A. Overlap and Hamiltonian in gliding basis

The gliding basis set {|ξμ〉} is nonorthogonal. Its overlap
matrix, or metric tensor, Sμν = 〈ξμ(t )|ξν (t )〉 is given by

Sμν (t ) = δμν + s(t ) (δμ,ν+1 + δμ,ν−1), (18)

where we assumed that f (t ) is real, and defined s(t ) as

s(t ) = N (t )2 f (δt ) f (δt − τ ).

The unperturbed Hamiltonian in Eq. (5) can be expressed
in the gliding basis when transferred to PRF. H0(t ) is a tridi-
agonal matrix, with time-periodic sub- and supradiagonals,
which annihilate after each period. The nonzero matrix ele-
ments are

〈ξμ, t |H0|ξμ, t〉 = ε0 − 2γ s(t ),

〈ξμ, t |H0|ξμ+1, t〉 = 〈ξμ, t |H0|ξμ−1, t〉 = ε0s(t ) − γ ,

and

〈ξμ, t |H0|ξμ+2, t〉 = 〈ξμ, t |H0|ξμ−2, t〉 = −γ s(t ),

although we will not need to solve for H0 given that we
already have the unperturbed (asymptotic) Floquet scattering
modes from Eq. (12).

The projectile potential VP of Eq. (14) becomes a matrix
with elements

〈ξ0, t |VP|ξ0, t〉 = εp N (t )2| f (δt )|2,
〈ξ1, t |VP|ξ1, t〉 = εp N (t )2| f (δt − τ )|2,
〈ξ0, t |VP|ξ1, t〉 = εp N (t )2 f (δt ) f (δt − τ ),

〈ξ1, t |VP|ξ0, t〉 = εp N (t )2 f (δt ) f (δt − τ ),

(19)

and zero otherwise.
An alternative way of introducing the projectile potential

is by parametrizing it directly in the gliding basis, already in
PRF. It is appealing given its conceptual and implementation
simplicity. The most straightforward choice would be to de-
fine VP by specifying its representation in the gliding basis as
the matrix

〈ξμ, t |VP|ξν, t〉 = εpδμνδμ0, (20)

that is, a matrix with a constant on-site term at the zero
site as the only nonzero term. This choice displays, however,
two conceptual disadvantages: (i) VP would then be gauge-
dependent; a different choice of f (t ) in Eq. (16) not only
affects convergence but also the results. (ii) Transforming
back to the original basis, it can be shown that the decay
length of the potential being represented depends on time, and
actually diverges at t = τ/2. It is shown in Appendix D.

Equation (20) can be expressed in operator form as

VP = |ξ 0, t〉εp〈ξ 0, t |,
where we are using the instantaneous dual basis {|ξμ, t〉},
defined, as usual (see e.g. in this context [50]), as the set of

states (at any given time) that satisfy

〈ξμ|ξν〉 = 〈ξν |ξμ〉 = δμ
ν , ∀μ, ν ∈ Z.

It allows us to extend the proposal to alternative ones using
locality in the natural and matrix representations of VP [50],
namely,

VP = |ξ0, t〉εp〈ξ 0, t |
and

VP = |ξ0, t〉εp〈ξ0, t |, (21)

respectively. The gauge-dependence problem remains for any
of these choices, but the latter is not affected by the extreme
time dependence of the range of the potential. It has the matrix
form

εp

⎛
⎝s(t )2 s(t ) s(t )2

s(t ) 1 s(t )
s(t )2 s(t ) s(t )2

⎞
⎠ (22)

for the block for μ, ν = −1, 0, 1, being zero otherwise. For
this paper, we choose to stay with the definition of VP given
by Eq. (19), given its gauge independence. Appendix D shows
some results for the projectile defined as in Eq. (21) for com-
parison, using the gauge employed throughout this paper.

B. Floquet space

The space spanned by the moving basis set in Eq. (10),
and equivalently, the one spanned by the gliding basis defined
in Eq. (16), gives a Hilbert space at time t , �(t ). As an
object (for all times), it represents a curved manifold [50]
that satisfies �(t + nτ ) = �(t ), even though the moving ba-
sis is not periodic. A Floquet space can be constructed as
F = � ⊗ T . As geometrical object it would certainly deserve
further mathematical attention, but, for the purposes of this
work, the following suffices.

Consider any time-periodic function � spanned by the
moving basis in the sense

|�(t )〉 =
∑

μ

�μ(t )|ξμ(t )〉. (23)

Since both |ψ (t )〉 and all the |ξμ(t )〉’s are periodic, then �μ(t )
is periodic, too. These coefficients can therefore be expanded
as

�μ(t ) =
∞∑

m=−∞
�μ

meimωt

and we can re-express Eq. (23) as

|�(t )〉 =
∑
μ,m

�μ
meimωt |ξμ(t )〉. (24)

This expression shows that the Floquet basis set
{| ξμ, m〉〉,∀μ, m ∈ Z} defined as

〈〈x, t | ξμ, m〉〉 = ξμ(x, t ) eimωt , (25)

constitutes a basis that spans the Floquet space F correspond-
ing to the original basis.
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The overlap matrix in these basis Sμν,mn = 〈〈ξμ, m|ξν, n〉〉
can be expressed as an inner product in the extended F space

Sμν,mn = 1

τ

∫ τ

Sμν (t )e−i(m−n)ωt dt

= δμ,νδm,n + sm−n(δμ,ν+1 + δμ,ν−1), (26)

with sm−n = 1
τ

∫ τ dt s(t )e−i(m−n)ωt . Similarly for H ,

Hμν,mn = 1

τ

∫ τ

Hμν (t )e−i(m−n)ωt dt . (27)

The matrix elements of the Floquet Hamiltonian H = H −
ih̄∂t are

Hμν,mn = Hμν,mn − ih̄Dμν,mn + n h̄ω Sμν,mn, (28)

where Dμν,mn = 1
τ

∫ τ Dμν (t )e−i(m−n)ωt dt , and Dμν (t ) =
〈ξmu(t )|∂tξν (t )〉 is the connection in the manifold [50].
Since the solutions for the unperturbed Floquet Hamiltonian
(containing the ∂t term) will be directly obtained from the
G boost of the Bloch solutions of the crystalline system, as
shown in the next section, the calculation of the connection
will not be needed.

The Hamiltonian of the 1D chain has been extended in Flo-
quet space, Eq. (28), as reflecting a 2D system [see Fig. 3(a)].
The quasienergy spectrum of Floquet modes is periodic in
quasienergy, with an ω repetition analogous to the period-
icity in reciprocal space for crystals. For the calculation of
the modes in a quasienergy unit cell (say, around ε = 0, as
Brillouin zone analog), the weight on basis functions dimin-
ishes with growing |m|, and a cutoff mc can be established,
reducing the 2D system to a ribbon of 2mc width, illustrated
in Fig. 3(a). We now address the Floquet scattering problem
in the representation given by the Floquet (Fourier) basis of
Eq. (25).

V. SCATTERING PROBLEM

A. Asymptotic states in the gliding basis

The Bloch-Floquet asymptotic scattering modes of the
moving tight-binding chain [Eq. (12)] can be expressed in the
gliding basis set as defined in Eq. (16), giving

|ψk (t )〉 = 1√
N

∑
μ

ψ
μ

k (t )|ξμ(t )〉, (29)

where ψ
μ

k (t ) are time-periodic coefficients, as in Eq. (23).
They are phase factors (|ψμ

k (t )|2 = 1) given by

ψ
μ

k (t ) = ψ
μ

k (δt ) = e−ikvδt eikaμ

N (δt )[ f (δt ) + e−ika f (δt − τ )]
. (30)

Again, δt = t − nτ , with n counting the number of periods
from t = 0. The result in Eq. (30) is to be expected from the
fact that the |ψk (t )〉 represent, at any given time, Bloch states
of the static lattice in PRF, to the points of which each |ξμ(t )〉
is associated (the denominator representing the usual nor-
malization factor of Bloch states for a nonorthogonal basis).
The extra phase e−ikvδt resulting from the transformation goes
beyond that argument. However, it should not be neglected in
spite of its inconvenient discontinuity, which seems to be an

FIG. 3. (a) Schematic illustration of a periodically driven 1D
Floquet chain represented in a 2D lattice. The green dashed lines
mark the cutoff of Fourier components to contribute to the primitive
cell in quasienergy ε around ε = 0. (b) Quasienergy bands vs Bloch
momentum k (solid black, lower abscissa), and as density of states
(red lines, upper abscissa) for the unperturbed tight-binding chain
moving with velocity −v in the projectile reference frame, for v = v0

in the units given by the hopping energy γ , h̄, and the lattice pa-
rameter a, as v0 = γ a/h̄. The tilted dashed line represents the Fermi
level, describing half-filling in equilibrium in the LRF. The replicas
at quasienergies beyond the chosen cell are indicated as faded, but
shown to illustrate periodicity.

inescapable manifestation of the relabelling of basis states at
every period.

Expanding the modes of Eq. (29) in the Floquet-Fourier
basis {| ξμ, m〉〉,∀μ, m ∈ Z} yields

|ψk〉〉 =
∑

m

ψ
μ

mk| ξμ, m〉〉, (31)

with ψ
μ

mk defined as

ψ
μ

mk = 〈〈ξμ, m|ψk〉〉 = 1

τ

∫ τ

ψ
μ

k (t )e−imωt dt . (32)

B. Unperturbed Green’s function

The scattering problem is addressed here using the Green’s
functions G(ε) defined for the Floquet Hamiltonian H as
a function of the quasienergy value ε. It is analogous
to time-independent (energy-conserving) scattering problems
addressed using G(E ) where the energy E is the conjugate of
time.
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However, in our periodic case, time has become as space-
like variable for the eigenproblem being faced for H, the
quasienergy ε becoming the conjugate of an auxiliary time
t ′ in the so-called t, t ′ formalism [51], which allows for a gen-
eralization of the scattering formalism involving the Dyson
equation in the extended Floquet space F .

Knowing the exact eigenstates of H0, and therefore, the
unperturbed Floquet-Bloch states of Eq. (31), the unperturbed
retarded Green’s function can be readily written as a matrix in
F as

gμν

mm′ (ε) =
∑

k

〈〈ξμ, m|ψk〉〉〈〈ψk|ξν, m′〉〉
ε − ε(k) + iη

, (33)

for η → 0+, or

gμν

mm′ (ε) = 1

N

∑
k

ψ
μ

mkψ
ν∗
m′k

ε − ε(k) + iη
, (34)

where

ψ
μ

mk = 〈〈ξμ, m|ψk〉〉 (35)

are the expansion coefficients defined in Eq. (31).
The unperturbed density of states (DOS) ρ0(ε) of the mov-

ing tight-binding chain is then obtained via

ρ0(ε) = − 1

π
Im

[∑
mm′

∑
μν

gμν

mm′ (ε)Sνμ,m′m

]
. (36)

Figure 3 shows ρ0(ε) in the absence of a projectile where the
lattice is moving with v = −v0, with v0 = γ a/h̄. The DOS
is periodically repeated in ε with a period of h̄ω, due to the
structure of the quasienergy spectrum, as apparent for the Van
Hove singularities appearing for Bloch states with a group
velocity equal to the projectile’s velocity v (zero velocity in
PRF, see Fig. 3).

C. Projectile perturbation: Dyson equation

The effect of the projectile is obtained to all orders using
the Dyson equation as for any scattering problem [52],

G(ε) = g(ε) + g(ε)VPG(ε) (37)

as expressed as matrices in an abstract form, being G(ε) the
perturbed Green’s function. It can expressed in the computa-
tionally convenient way

G(ε) = [g−1(ε) − VP]−1, (38)

which, given the structure of Eq. (37), can actually be solved
as a matrix inversion of the matrix blocks corresponding to
nonzero VP elements, which, from Eq. (19), correspond to two
rungs of the ribbon in Fig. 3(a).

Hence, the perturbed density of states and the contributions
from different basis functions can be calculated

ρμm(ε) = − 1

π
Im

[∑
νm′

Gμν

mm′ (ε)Sνμ,m′m

]
(39)

as a decomposition of the total density of perturbed states
ρ(ε). The latter, suitably normalized, does not differ from
ρ0(ε), given the infinitesimal weight of the scattering region.

Hence, the decomposed functions are significant. Here we will
use decomposition by site, showing

ρμ(ε) =
∑

m

ρμm(ε).

Equation (38) is solved by matrix inversion numerically
and converged results are obtained for a cutoff mc = 50, ren-
dering matrices of 202 × 202, given the two sites directly
affected by the projectile potential in Eq. (19).

Figure 4 shows the perturbed DOS ρ(ε) projected on site
μ = 0 in the presence of the projectile introduced in Eq. (19)
for a range of repulsive [Figs. 4(a) and 4(b)] and attractive
[Figs. 4(c) and 4(d)] values of εp. They show how the spectral
weight of regions of large ρ0(ε) (in the region between the
van Hove singularities) is shifted away, with peaks appearing
in the low-ρ0(ε) region. This is comparable to the localized
state generated by a local perturbation in a static 1D TB chain
(see Fig. 11 in Appendix E). For the moving system, however,
a resonance appears instead of a localized state, given the fact
that the unperturbed spectrum has no gaps.

It is apparent in Fig. 4 that the spectral weight shift up-
wards for the repulsive projectile potential is different from
the equivalent shift downwards of the attractive counterpart,
breaking the up-down symmetry that appears in the conven-
tional locally perturbed TB (static) chain [52]. As illustrated
in Appendix E, the static TB chain with a local perturbation
also breaks that up-down symmetry whenever the perturbing
potential breaks inversion symmetry (left-right symmetry in
the chain): the usual picture of having ρμ(−ε) for εP > 0
equal to ρμ(ε) for εP < 0 and vice versa (for ε = 0 in the
middle of the TB band), does not hold when the perturbation
is not centrosymmetric either around an atom or around the
center of a bond. Therefore it is no surprise that we observe
a similar effect in the case of the moving projectile, since the
motion itself breaks that symmetry.

The site-projected perturbed DOS is expected to recover
that of the unperturbed one when moving sufficiently far
away from the projectile. This behavior is shown in Fig. 5,
which displays ρμ(ε) at various sites μ moving away from
the projectile.

D. Projectile velocity dependence

Figure 6 shows the unperturbed and perturbed DOS of
electronic stationary states for εP = 0.7γ , for various values
of the projectile velocity, namely, v = 0.5, 1.0, 2.0, and 2.5,
in units of v0 ≡ γ a/h̄, along with the quasienergy bands of
the unperturbed crystal. As before, the periodically repeated
bands have an energy separation of h̄ω = 2π h̄v/a, propor-
tional to the velocity of the projectile.

For a velocity of v = v0 [as in panels (d)–(f) of Figs. 6 and
4], there are quasienergies for which three asymptotic states
are degenerate, allowing for, e.g., an electron coming in from
the right to be transmitted (same state), scattered back towards
the left or remain going to the right but more slowly (all in the
PRF). For other values of the quasienergy (the region with
lower ρ0(ε)) there is only one asymptotic state and there is no
scattering channel beyond pure transmission: the projectile is
transparent at those quasienergies. This is rather a peculiarity
of the single band model, since any more realistic model
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FIG. 4. Perturbed density of states (DOS) ρ vs quasienergy ε on site μ = 0 for (a) repulsive weaker (εp = 0.1, 0.3, and 0.5 in units
of hopping energy γ ) and (b) stronger (εp = 0.7 and 0.9) projectile potential. Same in (c) and (d) for attractive projectile potential. The
unperturbed DOS is indicated by dashed lines. Faded region of the curves are for the replicas as in Fig. 3(b). The value of η = 0.07γ is used
throughout.

would include higher bands which would provide scattering
options for any quasienergy and any projectile velocity.

Increasing the velocity from our v = v0 starting value, the
cell grows, the van Hove singularities enclosing the three-state
regime get closer to each other, until, for v reaching the
largest electronic group velocity (the Fermi velocity at half
filling, vF = 2v0), both van Hove singularities merge into one.

Beyond that first critical velocity vc
1 = vF = 2v0 the projectile

is swifter than any electron, the supersonic regime, and no
scattering process takes place for any quasienergy, again, a
peculiarity of the single-band model. An example is shown in
Figs. 6(j)–6(l), for vP = 2.5γ a/h̄. The perturbed and unper-
turbed DOS locally differ, since the projectile potential still
affects the wave functions locally, but there is no outgoing

FIG. 5. Perturbed density of states ρ vs quasienergy ε evaluated at various sites μ moving away from the projectile (at μ = 0).
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FIG. 6. Quasienergy bands of scattering states, unperturbed DOS
and perturbed DOS for v = 0.5 [(a)–(c)], 1.0 [(d)–(f)], 2.0 [(g)–(i)],
and 2.5 [(j)–(l)], all in units of γ a/h̄. v = vF = 2γ a/h̄ is the highest
group velocity of electronic states in the LRF, and the Fermi velocity
at half-filling. vP.vF define the supersonic regime.

Bloch wave different from the incoming one regardless of
which incoming one it is.

For slower projectiles, the quasienergy unit cell be-
comes smaller, the van Hove singularities of the unperturbed
DOS get closer together squeezing the nonscattering region,
thereby squeezing the resonance in the perturbed DOS with
them, as illustrated in Figs. 6(a)–6(c). If for v = v0 there were
regions of quasienergy for which there were up to three com-
patible states, slowing down below a critical velocity, vc

2, an
interval of quasienergy values appear for which there are five
degenerate asymptotic states, below vc

3 there are seven, and
below vc

n there are 2n + 1, crowding towards the low-velocity
limit, which becomes harder to treat, except for v = 0 strictly,
which becomes the much simpler static impurity problem.
It is a singular limit [53], analogous to the one found when
treating low-k phonons in a crystal, which becomes hard when
addressing the periodic superlattice capturing their long wave-
lengths, while it becomes trivial when strictly at the � point.

For velocity below vc
1 = vF , the tilted bands of Fig. 3(b)

display local minima and maxima. Further critical values vc
n

are defined by the velocities for which a horizontal line tan-
gentially touches one minimum and one maximum (best seen
as one single tilted band in an extended reciprocal space plot),

which happens when

vF cos ka = [(n + 1/2)π − ka]v,

vF sin ka = v.

Solving for k and v yields

vc
n = vF

{
1, 0.219, 0.129, . . . , ∼ 1

(n + 1/2)π

}

for n � 1 (the last expression being for large n).

VI. PARTICLE DENSITY

The independent-particle problem discussed so far can
then be used to address the many-particle problem using a
mean-field approach. The most attractive proposition given
its efficiency and success in other contexts would be the
one based on Kohn-Sham (KS) time-dependent DFT [43,54],
It has been shown, however, that Floquet TDDFT may be
ill defined [47,55,56]. Nevertheless, the main experimental
observable in the field of electronic stopping processes is
the electronic stopping power, which relates to the suitable
average of the force opposing the motion of the projectile,
and which, as long as the projectile potential is local, can be
obtained as the simple functional of the particle density n(r, t )

FP(t ) = −
∫

d3r n(r, t )∇VP(r, t )

quite generally, regardless of the theory with which n(r, t )
is obtained (see, e.g., the discussion of Ehrenfest forces in
Ref. [44]). We will just assume it is a mean-field theory,
and use the single-particle problem discussed in previous sec-
tions to define the perturbed particle density.

A. Occupation

Two extra ingredients are needed beyond what obtained
so far, occupation and self-consistency. The latter is used to
define the effective potential in the single-particle Hamilto-
nian iteratively from the perturbed density and/or perturbed
wave-functions. However, in the context of this paper it only
represents a redefinition of the parameters defining the model.

The occupation requires special attention. Occupation is
normally quite trivially treated in equilibrium or near equi-
librium, by simply integrating the relevant Green’s functions
from −∞ to the Fermi level. However, in our case, occupied
states are defined by the Fermi level in the LRF, which means
that occupation in the PRF is defined by a “tilted Fermi level”
(shown in Fig. 3). Therefore, it depends on the crystal momen-
tum k of the unperturbed incoming scattering states. At any
given quasienergy there can be both occupied and unoccupied
states, as seen in Fig. 3.

We address the occupation problem analogously to earlier
work for nonequilibrium ballistic transport [38], where equi-
librium is defined separately in the two side electron reservoirs
(leads), thereby having two separate Fermi levels. The idea
is to obtain the scattered wave-functions from the Lippmann-
Schwinger equation,

|�n,k〉〉 = {1 + G[ε(k)]VP}|ψn,k〉〉,
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for all incoming scattering states that correspond to occupied
states in the laboratory frame. We then use the scattered wave
functions to build the occupied Green’s function (equivalent
to the “lesser” Green’s function in Ref. [38]), as

G<(ε) =
occ∑
k

|�k〉〉〈〈�k|
ε − ε(k) + iη

the sum running over all perturbed states �k that result from
the scattering of the initially occupied asymptotic (Bloch)
states of the crystal. Integrated many-particle quantities such
as the particle density are then obtained by suitable integrals
of G<(ε) over all quasienergies. In our representation,

G<μν

mm′ (ε) =
occ∑
k

�
μ

mk�
ν∗
m′k

ε − ε(k) + iη
.

The density matrix, Dμν

mm′ , defined as

Dμν

mm′ =
occ∑
k

�
μ

mk�
ν∗
m′k, (40)

can then be obtained from G< by integrating over all
quasienergies in one cell,

Dμν

mm′ = − 1

π
Im

∫ h̄ω

G<μν

mm′ (ε)dε,

from which the particle density is obtained directly
(Sec. VI B), as well as properties depending on it, such as
forces on atoms, and, from the force on the projectile, the
electronic stopping power. It is illustrative, however, to see
the density of occupied states projected on the different sites,

ρocc
μ (ε) = − 1

π
Im

[∑
νmm′

G<μν

mm′ (ε)Sνμ,m′m

]
, (41)

which is equivalent to what displayed in Fig. 4, but now for
G<, and it shown in Fig. 7.

B. Particle density n(x, t )

The particle density n(x, t ) of the 1D chain in the presence
of the projectile in real space and time is given by

n(x, t ) =
∑

μν,mn

Dμν
mnξμ(x, t )ξ ∗

ν (x, t )ei(m−n)ωt , (42)

where the ξμ(x, t ) are the gliding basis functions as defined in
Eq. (16).

The evolution of n(x, t ) during one time period (τ ) is
shown in Fig. 8 for various values of the perturbation po-
tential. The time evolution is indicated by superimposing
snapshots at t = 0, τ/5, 2τ/5, 3τ/5, and 4τ/5. Snapshots
for subsequent times on the same sequence fall exactly on
the depicted ones. The implicit orthonormal basis functions
of the original TB model have been given an explicit shape
(see Appendix G) for the plotting of n(x, t ).

The small wavelength oscillations depicted relate to the
shape of orbitals, with the periodicity of the lattice, as can
be seen in the absence of projectile, in panel (a) of Fig. 8. As
εP is increased, a growing charge depletion is observed in the
figure, around (and slightly in front of) the repulsive projectile

FIG. 7. Comparison between the unperturbed DOS (dashed
black), perturbed DOS (red), and occupied perturbed DOS (blue) vs
quasienergy ε in units of γ , for a projectile with velocity v = v0 and
perturbation potential εp = 0.5γ (with η = 0.01γ ).

at x = 0. Since v > 0, the projectile is moving to the right,
and it is also apparent how the density is enhanced on the
right of the projectile and depleted on the left. The appearance
of oscillations of larger wavelength than the lattice is also
observed, in analogy with what happens in a static TB. A
comparison with results for v = 0 is provided in Appendix E.

FIG. 8. Particle density n(x, t ) snapshots at t = nτ/5 for n =
0, 1, . . . , 4 (lighter curves for earlier times), for a projectile of εP =
0, 0.1γ , 0.3γ , 0.5γ , 0.7γ , and 0.9γ in (a) to (f), respectively. The
velocity of the projectile is set to v = v0.
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VII. CONCLUSIONS

A local basis implementation of the Floquet theory of
electronic stopping of Ref. [35] has been devised using a
one-dimensional single-band tight-binding model for demon-
stration, but also as a simple (simplest) model for describing
the stroboscopically stationary states resulting from elec-
tronic stopping processes for projectiles of any strength
and velocity.

Once a gliding basis transformation is proposed to define
a time-periodic but not displacing basis set in the projectile
reference frame, the single-particle scattering states are ob-
tained with a conventional Dyson-Green’s functions scattering
formalism. The integration over all incoming states for a de-
termination of many-particle properties at a mean-field level
is accomplished by summing over the perturbed scattering
states from the occupied incoming ones using the Lippmann-
Schwinger equation. From the Green’s function for occupied
states the density matrix and the particle density are readily
obtained.

Although both the jellium work [10–14] and its Floquet
generalization [35] offer expressions for the electronic stop-
ping power as key magnitude in comparison with experiment,
they are based on the individual single-particle scattering
amplitudes and corresponding single-particle energy changes
in the laboratory reference frame, which would be perfectly
adequate for a system of truly noninteracting particles, but not
for TDDFT (see, e.g., Ref. [15]) or similar mean-field theo-
ries. The quasienergy conserving individual Floquet scattering
states of the Kohn-Sham particles give a good approximation
to the particle density n(x, t ), however. The stopping power
can then be obtained at the same level of theory directly
from the force acting on the projectile, which is an explicitly
known functional of the density [45] and which is straight-
forwardly calculated in any modern electronic structure
program.
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APPENDIX A: MOVING TIGHT-BINDING MODEL IN 3D

The Bloch basis are constructed starting from the set of
local basis φ′

li(r
′) ≡ φ′

l (r
′ − ti ), where l indicates the orbital

type and ti is a vector indicating the center of the atom in the
primitive unit cell (position i). The Bloch basis can be then
defined as

χ ′
kli(r

′) = 1√
N

∑
R′

eik·R′
φ′

liR′ (r′), (A1)

where the summation goes over all of the lattice vectors R′ =
μ1a1 + μ2a2 + μ3a3 as φ′

liR′ (r′) = φl (r′ − ti − R′). They can
be used as the basis for the single-particle eigenstates of the
unperturbed crystal Hamiltonian

λ′
nk(r′) =

∑
l,i

cnkliχ
′
kli(r

′) (A2)

and are associated with eigenvalues En(k) for band n. Once
the crystal states are found, they can be transformed to the
PRF via the Galilean transformation G as in the 1D case [49].

λnk(r, t ) =
∑

l,i

cnklie
− i

h̄ (En(k)+ 1
2 mv2 )t e− i

h̄ mv·rχ ′
kli(r + vt ).

(A3)
The Bloch-Floquet modes are

ψnk(r, t ) = e−ik·vt e− i
h̄ mv·r ∑

il

cnkli χ ′
kli(r + vt )

= e−ik·vt e− i
h̄ mv·r 1√

N

∑
ilR

cnkli eik·Rφ̃liR(r, t ), (A4)

where Eq. (A1) was used and φ̃liR(r, t ) ≡ φ′
liR(r + vt ). Note

that this expression is simply the generalization to 3D of the
1D Floquet modes of Eq. (12). It is, in principle, valid for any
direction of v = vv̂, and the resulting Floquet modes are time-
periodic with a period τ = a/v, being a the unit cell length of
the crystal repetition along the projectile’s trajectory, which
depends on the relative disposition of the trajectory and the
host’s crystal structure. a can therefore take values from the
length of the shortest lattice vector, all the way to infinity. The
latter case will arise along incommensurate directions in the
crystal, in which case the boosted Bloch states of Eq. (A4)
are not strictly Floquet modes since they are not time periodic
(τ → ∞).

The Floquet modes of Eq. (A4) are eigenstates of the
Floquet operator H(r, t ) = H (r, t ) − ih̄∂t . Similarly, the lo-
calized gliding basis set (per orbital type) can be defined in
the direction of the velocity

ξliR(r, t ) = N (t )[ f (δt )φliR+nav̂(x, t )

+ f (δt − τ )φliR+(n+1)av̂(x, t )], (A5)

where all the definitions from Sec. IV carry on unchanged.
It should be noted that in 2D and 3D, other definitions for
the gliding basis might be more convenient when consider-
ing velocity directions deviating from the primitive lattice
vectors. In addition, depending on the exact direction of v,
the treatment can become numerically very complex—see the
discussion in Ref. [48], p. 69, analogous to the v → 0 limit
(Sec. V D)—and other methods (or particularly tailored gauge
choices) could be more suitable.
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APPENDIX B: FLOQUET MODES FROM THE BLOCH
STATES

Consider the moving Bloch state in the PRF

λk (x, t ) = e−i mv
h̄ xe−i[E (k)+ 1

2 mv2]t/h̄
∑

μ

eikaμ

√
N

φ̃μ(x, t ).

In the Bloch form, from Ref. [35],

λk (x, t ) = e−i[E (k)+ 1
2 mv2−h̄kv]t/h̄

[
eix(k−mv/h̄)uk (x, t )

]
,

where uk (x, t ) ≡ u′
k (x + vt ) is the periodic envelope of

the Bloch eigenstate, thus defining the time-periodic mode
ψk (x, t ) as the expression in brackets. By comparing the two
expressions the Bloch-Floquet mode in this local basis repre-
sentation is readily extracted

ψk (x, t ) = e−ikvt e−imvx/h̄ 1√
N

∑
μ

eiμkaφ̃μ(x, t ),

periodic with the period of τ = a/v and eigenstate of
the Floquet Hamiltonian H(x, t ) = H (x, t ) − ih̄∂t . Indeed,
performing the direct calculation for ψk (x, t ) [using the sim-
plified notation f ≡ f (x, t )]

−ih̄
∂

∂t
ψk = −h̄kvψk + ve−i(kvt+mvx/h̄) p̂

1√
N

∑
μ

eiμkaφ̃μ,

with p̂ = −ih̄∂x. By applying the Hamiltonian transformed
in the PRF H (x, t ) = H ′(x, t ) − v p̂ − mv2/2 to ψk [where
H ′(x′) is the Hamiltonian in the LRF, x = x′ − vt using our
convention] one obtains

Hψk = [E (k) + mv2/2]ψk − ve−i(kvt+mvx/h̄) p̂
1√
N

×
∑

μ

eiμkaφ̃μ,

with E (k) being the energy of the Bloch state in the LRF. The
above lead directly to the Floquet equation

H(x, t )ψk (x, t ) =
[

E (k) + 1

2
mv2 − h̄kv

]
ψk (x, t ),

verifying explicitly that ψk is indeed the Floquet mode with
the correct value for the quasienergy. The quasienergy replicas
arise from the k values in the extended zone, since

k → k + n
2π

a
⇒ ε(k) → ε(k) − h̄

(
n

2π

a

)
v

= ε(k) − nh̄ω.

APPENDIX C: GAUGE FUNCTIONS FOR THE GLIDING
BASIS

The function f (t ) defining the gliding basis transformation
represents a gauge freedom that can be used for convenience.
Here a few examples:

f̃1(t ) =
∣∣∣cos

(π

2

t

τ

)∣∣∣,
f̃2(t ) = cos2

(π

2

t

τ

)
, (C1)

FIG. 9. Examples of gauge function f (t ), corresponding to the
four in Eq. (C1), indicated by increasingly short dashes. f3(t ) is
depicted for α = 2.

f̃3(t ) = e−αt2/(τ 2−t2 ),

f̃4(t ) = �(t +τ/2) − �(t −τ/2),

where �(t ) is the Heaviside step function, and where f (t ) is
defined from f̃ (t ) as

f (t ) =
{

f̃ (t ), t ∈ [−τ, τ )
0, t /∈ [−τ, τ )

.

The corresponding f (t ) functions are depicted in Fig. 9. f1(t )
is convenient for simplicity, since N (t ) = 1 at all times, but
shows a derivative discontinuity at t = ±τ , while f2(t ) dis-
plays continuity of the function and first derivative, with a
discontinuous curvature at t = ±τ . f3(t ) has all derivatives
continuous there, and contains the free α parameter that fat-
tens the function within its limits. f4(t ) gives the simplest,
“relabelling” transformation, i.e., ξ orbitals follow the φ or-
bitals leftwise, but every period they abruptly jump by one
lattice parameter rightwise. That is, ξμ(x, t ) = φμ(x, δt−τ/2).
f2(t ) is the one used in the calculations presented in this work.

As one would expect, the choice of gauge function should
not make any difference in the physical quantities that are
basis independent for a given Hilbert space. What can be dif-
ferent is the convergence behavior of such physical quantities
when performing Fourier transformations with a cutoff. In
Fig. 10, we show the difference in the convergence behavior
of the total density of states when using gauge functions f1

and f2, by computing the integral of the difference squared of
the DOS’s

�ρ =
∫

[ρ f 1(E ) − ρ f 2(E )]2dE (C2)

as obtained using gliding bases corresponding to f1 and f2, for
various cutoff thresholds mc. Figure 10 clearly shows how the
difference between the DOS computed using the two different
gauge functions decreases as we increase the cutoff, and they
eventually converge to the same function ρ(E ), as expected.
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FIG. 10. Difference in convergence versus Fourier cutoff mc of
the total densities of states obtained by using the different gliding
basis sets arising from gauge functions f1 and f2. �ρ is as defined in
Eq. (C2).

APPENDIX D: ALTERNATIVE PROJECTILES

If the projectile operator VP is defined directly on the glid-
ing basis (Sec. IV A), as, e.g.,

〈ξμ|VP|ξν〉 = εpδμνδμ0,

knowing its form in the original basis requires the determina-
tion of the inverse of the basis transformation of Eq. (16).

1. Inverse transformation tensor

The basis set transformation in Eq. (16) can be expressed
as

|ξμ〉 = |eσ 〉Aσ
μ (D1)

assuming summation over repeated indices and dropping the
time dependence for brevity.

Aσ
μ = 〈eσ |ξμ〉

and {|eσ 〉,∀σ = 1 . . .N } is the dual basis of {|eσ 〉}, such
that 〈eσ |eδ〉 = 〈eδ|eσ 〉 = δσ

δ , and, consequently, |eσ 〉〈eσ | =
|eσ 〉〈eσ | = P�, the projector onto the subspace spanned by the
basis. In this case

Aσ
μ(t ) = N (t )

[
f (δt )δσ

μ+n + f (δt − τ )δσ
μ+n+1

]
which is a square matrix with a nonzero bidiagonal that
displaces leftwards and downwards. For simplicity in the fol-
lowing, let us re-express it, for any given time, as

Aσ
μ = c δσ

μ+n + s δσ
μ+n+1. (D2)

The inverse transform is defined as

|eσ 〉 = |ξμ〉Bμ
σ (D3)

with Bμ
σ = 〈ξμ|eσ 〉. If both bases were orthonormal, the

transformation matrix would be unitary, so that B = A−1 =
A+. Since the gliding basis is not orthogonal, however, the
inverse relations are BA = AB = 1 in the sense

Aσ
μBμ

γ = δσ
γ and Bμ

σ Aσ
ν = δμ

ν . (D4)

The sought expression for the original-basis representation
of VP depends on the inverse transformation, since we need

to express any |eσ 〉 in terms of the |ξμ〉 states, and that is
precisely Eq. (D3). Putting together Eqs. (D2) and (D4), we
obtain

c Bμ
σ + sBμ

σ−1 = δμ
σ ,

and, again, for clarity, let us focus on μ = 0 and call B0
σ as

Bn, giving the recursive relation
c Bn + sBn−1 = δ0

n .

For c > s, the solution is

Bn =
⎧⎨
⎩

0 n < 0
1
c n = 0

1
c

(− s
c

)n
n > 0

,

whereas for c < s,

Bn =

⎧⎪⎨
⎪⎩

1
s

(− c
s

)n
n < −1

1
s n = −1

0 n > −1

.

That is, the lower (upper) triangle of the infinite matrix is zero
for c > s (c < s), while the elements of the other triangle dis-
play a sign alternation when moving away from the diagonal,
with an exponential decay of the magnitude,

|Bn| ∝ e−ζn,

with ζ = ln(c/s) for c > s and ζ = ln(s/c) for c < s. The
decay length diverges when c approaches s, swapping triangle
precisely at c = s. Since c and s represent a periodic function
in time, one delayed with respect to the other, the B tensor
starts diagonal, gradually extends into the upper triangle until
full, then abruptly swaps into the full lower, which then grad-
ually shrinks towards diagonal again (but shifted by one). And
so it cycles.

2. Resulting projectile representation

The projectile potential expressed as VP = |ξ 0〉εp〈ξ 0|,
becomes

VP,σλ = 〈eσ |VP|eλ〉 = εp B0 ∗
σ B0

λ

which gives a matrix with an exponential decay towards the
lower-right quadrant and zero otherwise, the range then di-
verging as t approaches nτ , and then swapping to the opposite
upper-left quadrant.

This behavior is nonphysical and produces awkward
behaviours. It is a rather unfortunate and nonintuitive conse-
quence of establishing local decompositions in the nonorthog-
onal gliding transformation. However, remember that the
alternative discontinuous-relabelling basis transformation

|ξμ, t〉 = |eμ, δt〉
is nothing by a particular choice of gauge function in the
gliding transformation (a step function), and that the situation
at mid-period is abrupt filling and swapping as well, although
it may appear less explicitly.

The situation for the natural representation choice VP =
|ξ0〉εp〈ξ 0| is less symmetric but ultimately suffering from the
same oscillations in projectile-potential spatial range. This is
why we have chosen to use the projectile as expressed in
Eqs. (14) and (19).
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FIG. 11. Perturbed density of states ρ on site 0 vs energy ε, in
units of γ , for a static single-band 1D tight-binding model with a
perturbation potential of the form specified in Eq. (E1), for various
values of εP (in units of γ ) between 0.0 (black) and 0.6 (purple) on
the left panel, and between 0.0 (black) to −0.6 (purple) on the right
panel.

APPENDIX E: STATIC TIGHT-BINDING IMPURITY
PROBLEM

For a better insight into features of the perturbed density
of states of the Floquet scattering model, especially related
to symmetry, the results of similar calculations for v = 0 are
presented here, i.e., a local impurity in a 1D single-band static
tight-biding model. A local on-site impurity perturbation of
the form

V = |φ0〉εP〈φ0|
(LRF and PRF coincide for v = 0) is known to produce a
bound state above (below) the band for positive (negative) εP,
and a local density of states on the perturbed site ρ0(ε) which
becomes ρ0(−ε) when changing the sign of εP, an “up-down”
symmetry that is not observed in Fig. 4 of the Floquet model.

That up-down symmetry in the static model is very charac-
teristic and related to the simplicity of the model, with a very
exceptional up-down symmetry in the unperturbed density of
states, plus the inversion symmetry in space implied by the
defined impurity potential V . Indeed, that symmetry is still
observed when introducing an off-diagonal V instead

V = (|φ0〉γP〈φ1| + H.c.)

(H.c. standing for Hermitian conjugate), or a combination of
diagonal and nondiagonal (presenting the nonzero V matrix
block, for sites 0 and 1)

V =
(

εP γP

γ ∗
P εP

)
,

now preserving inversion symmetry around the center of the
bond between sites 0 and 1.

However, the up-down symmetry disappears when the in-
version symmetry is broken, which is simplest to describe
with

V =
(

εP0 γP

γ ∗
P εP1

)
= εP

(
0.5 0.2
0.2 0.35

)
, (E1)

where εP0 �= εP1, and where a set of particular values are
proposed scaled by a single parameter εP. Figure 11 shows
the perturbed density of states at site 0 for the specified per-

FIG. 12. Particle density n(x) in real space for the same model
and same values as Fig. 11. It has been obtained following the
procedure using the Lippmann-Schwinger equation described in
Sec. VI A, and therefore, it does not include the particle density
associated to the bound state (note relevant only to the static attractive
case).

turbation, for various values of the impurity potential strength
εP. The up-down symmetry is visibly broken.

The analogous difference for attractive versus repulsive
local perturbation for the Floquet model apparent in Fig. 4
relates to the same inversion symmetry breaking, although in
the Floquet case it is due to the right to left motion of the
crystal with respect to the projectile in the PRF.

The effect of the perturbing potential of Eq. (E1) on the
particle density of the static chain is presented in Fig. 12 for a
range of values of εP, repulsive on the left panel and attractive
on the right. The functional form of the basis functions used
for that plot is defined in Appendix G. The same particle
density is shown over a longer range in real space in Fig. 13,
showing the long-range perturbation characteristic in 1D.

APPENDIX F: ALTERNATIVE PROJECTILE DEFINITION

Figure 14 shows the same information as Fig. 4 but for
the alternative definition of the projectile perturbing potential
proposed in Eq. (21). It is defined directly on the gliding
basis, which means that it is gauge-dependent, and, although
convenient to write down, quite inconveniently dependent on
the arbitrary choice of gauge, which is f2 of Eq. (C1) in this
case. The qualitative behavior is however unchanged.

APPENDIX G: LOCAL BASIS IN REAL SPACE

For the purpose of calculating the charge density in real
space for producing Fig. 8, the real-space shape of the func-
tion φ(x) that gives rise to the original basis set of the

FIG. 13. Same as Fig. 12 over a longer range in real space.
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FIG. 14. Perturbed density of states ρ vs quasienergy ε for v =
v0, calculated using the alternative definition of the projectile poten-
tial as shown in Eq. (21), which is defined directly on the gliding
basis, using the gauge specified as f2 in Eq. (C1) in Appendix C.
Left (right) panel shows DOS for several positive (negative) values
of the perturbation potential strength εP.

tight-binding model {φμ,μ ∈ Z} has to be specified. It is
defined as

φ(x) = N e−αx2
cos

(
2π

b
x

)
,

where α defines the width of the Gaussian, and 2π
b origi-

nates an underlying oscillation that ensures (and b is chosen
such) that the nearest-neighbor overlap is zero. For α � a,
the second nearest-neighbor overlap is not zero but negligible,
giving an effectively orthonormal basis, once φ(x) is suitably
normalized with

N =
(

8α

π

)1/4

(1 + e−2π2/αb2
)−1/2.

The values used in this work for Figs. 8, 12, and 13 are α = a
and b = 4a.

APPENDIX H: SCATTERING AMPLITUDES

As argued in the paper, the safest way to obtain the
electronic stopping power and characterize the electronic
distortion is via the particle density, which is addressed in
Sec. VI B. However, the single particle description can also
render useful information for further analysis, such as excita-
tion rates for the different single-particle excitation channels
involved, as well as the traditional estimation of the stopping
power directly from elementary processes and their single-
particle energy jump in LRF, as used in Refs. [10,35]. The
calculation of single-particle scattering amplitudes are pre-
sented here, from which such single-particle results can be
extracted.

FIG. 15. Scattering matrix for v = v0. (a) Schematic illustration
for the labeling of the scattering probability coefficients, |ri j |2. Scat-
tering coefficients: (b) |rPN |2 from states with vg > 0 (right going
states in the PRF, positive, P) to states with vg < 0 (negative, N),
(c) |rNN |2 with vg < 0 to states with vg < 0 and (d) |rNP|2 with
vg < 0 to states with vg > 0, the three scattering possibilities beyond
transmission for v = v0, scattering from occupied states.

Starting from the transition operator or T-matrix for our
model [57]

T(ε) = [VP + VPG(ε)VP], (H1)

the scattering matrix is then defined as

S = 1 − i
a

h̄vg
T. (H2)

Scattering amplitudes have been calculated for v = v0, for
scattering from states with negative and positive (“N” and
“P”) group velocities to states with the same quasienergy of
negative and positive (“N” and “P”) group velocities, which
are separately shown in Fig. 15. A visual aid for the label-
ing of the scattering amplitudes is depicted in Fig. 15(a).
The magnitude of the scattering generally increases as the
strength of the perturbation potential grows, as expected,
although the situation is considerably richer than the custom-
ary 1D reflection and transmission coefficients, including the
quite counter-intuitive behavior of perfect transparency for
some incoming quasienergies regardless of the strength of the
projectile perturbation.
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