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Coupling between tilts and charge carriers at polar-nonpolar perovskite interfaces
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The phenomenological theory for the polar instability giving rise to a two-dimensional electron gas at
perovskite interfaces is hereby extended to include the coupling to perovskite tilts. A Landau theory for homo-
geneous tilts is first explored, setting the scene for the further, more realistic Landau-Ginzburg theory describing
varying tilt amplitudes across a thin film. The theory is also generalized to account for the response to an applied
electric field normal to the interface, which allows a finer control on phase transitions. The conventionally
described physics of a single metal-insulator transition is substantially enriched by the coupling, the model
describing various scenarios with one or two transitions, possibly continuous or discontinuous. First-principles
calculations permit the estimation of the parameters defining the model, which have been calculated for the
interface between lanthanum aluminate and strontium titanate.
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I. INTRODUCTION

The discovery of an insulator-metal transition at the inter-
face between two insulating perovskites sparked considerable
interest in the scientific community [1,2]. When thin films
of lanthanum aluminate (LaAlO3, LAO) were grown on sub-
strates of strontium titanate (SrTiO3, STO), a two-dimensional
electron gas (2DEG) was found to appear at the interface
in order to screen the polar discontinuity there. This 2DEG
has been found to be associated with interesting phenomena
such as enhanced capacitance [3], superconductivity [4], and
magnetism [5], even at the same time [6,7]. It also has poten-
tial for applications in field effect transistors (FET) [8–10],
sensors [11], photodetection [12], thermoelectrics [13,14],
and solar cells [15,16]. The physical origin and character of
this insulator-metal transition have been debated for many
years, and discussed in several reviews [17–28]. In response
to a polar discontinuity at the interface, first proposed in the
original papers on LAO/STO [1,2], two of the most popu-
lar theories for the appearance of the 2DEG are indirectly
supported by experimental evidence: the first is electronic
reconstruction, where the 2DEG forms via a transfer of elec-
trons from the valence band at the surface of the thin film to
the conduction band at the interface in order to screen the
polar discontinuity [29–31]. The second achieves the same
screening by means of redox defects, where oxygen vacan-
cies or hydrogen adatoms, for example, form at the surface,
creating charge carriers that can move to the interface [32–39].
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In Ref. [40] it was predicted that both mechanisms are pos-
sible, depending on the experimental conditions such as the
oxygen pressure and the growth temperature [39,41]. The
character of the transition with film thickness, i.e., whether
the carriers appear continuously or discontinuously after a
critical thickness, is still debated. It has been observed in
experimental studies [2] and suggested in theoretical studies
[28,42] based on redox effects that a discontinuous transition
occurs at a critical thickness dc between 3 and 4 unit cells
of LAO. However, film thickness is not a good parameter
with which to make any conclusions about the order of the
transition since it is fixed for each sample and is changed
discretely by a number of unit cells. Thus, it is impossible
to conclude whether the transition is continuous or discon-
tinuous, and the problem is only of theoretical interest. A
more realistic approach to investigate this would be to apply
an electric field, using top and back gates [43], to a sample
which is close to the critical thickness. An electric field can
be used to switch the 2DEG on [44] and off [45] in a single
sample, which is a desirable feature in practical applications.
It can also enhance the properties of the 2DEG such as the
superconductivity [46–48], magnetotransport [49], and optical
behavior [50]. An electric field could be tuned with more
precision and thus would be more suitable for studying the
character of the insulator-metal transition experimentally. A
phenomenological theory at the mean-field level, which treats
the carriers as a homogeneous charge distribution σ , predicts
that the onset of carriers with thickness is continuous, with
a critical exponent for σ of 1 [28]. When thinking about
the redox defects proposed in Ref. [28], an assumption of
noninteracting defects suggests a drastically discontinuous
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transition, switching on directly to σ ∼ Ps [42], Ps being the
polar discontinuity, half an electron per primitive unit cell
surface area for LAO/STO; when it becomes favorable for one
vacancy-carrier pair to form, it is favorable for all of them to
form, giving the mentioned discontinuity at dc. One can go
beyond the mean-field level by considering the interactions
between the traps [38]. The vacancy at the surface and carrier
at the interface act like a dipole, and thus there would be
dipole-dipole interactions between the vacancies. This pre-
dicts a transition which is still continuous, but with a critical
exponent of 2

3 . Something that has to our knowledge not yet
been considered is the influence of other phase transitions,
such as the antiferrodistortive (AFD) rotations of oxygen oc-
tahedra (tilts), which both LAO and STO can exhibit. Tilts
compete with the polar mode, so it is reasonable to expect that
they may indirectly interact with the carriers, which appear
to screen the polar discontinuity. The competition between
tilts and the polar mode in LAO/STO has been considered in
a previous study [51], although the influence of the tilts on
the appearance of the carriers at the phenomenological level
has not been considered. In this paper we generalize the phe-
nomenological model of carrier formation at polar-nonpolar
perovskite interfaces to account for coupling to tilts in the
thin film. We show that, upon coupling to homogeneous tilts,
four new distinct types of transitions are possible, depending
only on the energetics of the tilts, polar discontinuity, and the
coupling between them. These include continuous and discon-
tinuous transitions of the carriers, facilitated by the tilts, and
both simultaneous and distinct transitions of tilts and carriers.
Using first-principles calculations, we can make predictions
about the type of transition which occurs at the LAO/STO
interface. We then generalize the model to allow for inhomo-
geneous tilts in the polar thin film, using Ginzburg-Landau
theory. The inhomogeneity of the tilts is determined by the
correlation length in the film and the extrapolation lengths,
which describe the relative energy differences between the
tilts in the interior and at the surfaces. We show that two of the
transitions predicted at the homogeneous level are unaffected
by the inhomogeneity of the tilts, other than the values at
which the transitions occur being renormalized. For the other
two transitions, their character can be changed by decreasing
the correlation length, leading to two entirely new types of
transitions which are not possible for homogeneous tilts.

II. COUPLING TO HOMOGENEOUS TILTS

A. Phenomenological theory of carrier formation

First, we review the phenomenological model of carrier
formation at polar-nonpolar perovskite interfaces [28], in-
troducing the applied electric field in a similar manner to
Ref. [52]. A sketch of the system is shown in Fig. 1. We have
a polar thin film of thickness d on top of a nonpolar substrate,
with, e.g., air above, similar to the geometry considered for
ferroelectric thin films in Ref. [53]. Experimentally, a poten-
tial bias is usually applied between the tip of an atomic force
microscope (AFM) at the surface of the film and a back gate
at the bottom of the substrate [10,45,54,55]. Realistically, this
would result in inhomogeneous electric fields which decay
away from the tip. However, we note for example that, in
the case of fields applied with an AFM tip, the lateral extent

FIG. 1. Sketch of the electrostatics of a polar-nonpolar interface.
A thin film of thickness d is placed on top of a semi-infinite substrate.
An electric field is applied using a back gate under the substrate
and a biased tip. For simplicity, we assume that the tip is much
wider than the thickness of the film, and that the applied field is
homogeneous. A 2DEG forms at the interface and a corresponding
2DHG or redox defects form at the surface of the thin film as the
combined result of the polar discontinuity and applied field. Dfilm is
the displacement field of the film and Ps is the polar discontinuity.
Dair is the displacement field of the region of air between surface of
the film and the tip, and Dsub is the displacement field of the substrate.

over which the field can be considered homogeneous (∼100
of nm) is much larger than the usual thickness of the polar film
(few nm). This is at least in part due to the meniscus of water
and other surface adsorbates that form around the AFM tip
[56]. In the interest of simplicity we consider a homogeneous
field, assuming the tip is much wider than the thickness of the
film. With the usual LaO/TiO2 termination, a 2DEG of carrier
concentration σ forms between the film and substrate, and
a corresponding two-dimensional hole gas (2DHG) or redox
defects form at the surface, in order to screen the polar dis-
continuity. The displacement fields in the film, substrate, and
air region between the film and tip are Dfilm = εfilmEfilm + Ps,
Dsub = εsubEsub, and Dair = εairEair, respectively, where Ps is
the polar discontinuity. We consider the displacement field
in the substrate as a tunable parameter with which the field
(or potential difference) applied to the system is measured.
The displacement field in the film could also be used [51].
All vectors are normal to the interface, so vector notation is
omitted. From Maxwell’s equations, the boundary condition
at interface relates the displacement fields in the film and the
substrate to the free charge σ :

(Dsub − Dfilm) · n̂ = −σ,

εsubEsub − εfilmEfilm − Ps = −σ,

⇒ Efilm = εsub

εfilm
Esub − 1

εfilm
(Ps − σ ), (1)
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where n̂ points outwards from the film. Assuming that the
boundaries of the film have equal and opposite carrier con-
centration, the boundary condition at the surface between the
film and the air region is also satisfied by enforcing finite-D
boundary conditions: Dsub = Dair (not the electric fields).

The electrostatic energy of the film is [57]

Felec =
∫ Dfilm

0
EfilmδDfilm = 1

2
εfilmE2

film. (2)

Using Eq. (1) we can write the electrostatic energy in terms of
Esub, Ps, and σ :

Felec = 1

2

ε2
sub

εfilm
E2

sub − εsub

εfilm
Esub(Ps − σ ) + 1

2εfilm
(Ps − σ )2

(3)

The first term corresponds to the energy of the applied field in
the substrate, which does not affect the carrier concentration
and can be neglected (the energy of the substrate is also ne-
glected for the same reason). The second term represents the
coupling between the applied field and the polar mode and the
third term is the electrostatic energy of the polar discontinuity.
Writing Eq. (3) in terms of reduced variables σ ′ = σ

Ps
and

E ′ = Esub
(Ps/εsub)

, which is the displacement field in the substrate,
in units of the polar discontinuity, we get

Felec(σ ′, E ′) = P2
s

2ε
(1 − σ ′)2 − P2

s

ε
E ′(1 − σ ′), (4)

where we drop the subscript εfilm → ε since the permittivity of
the substrate has been absorbed into the scale for the applied
field and no longer appears in the free energy. For E ′ = 0, the
energy is minimized when σ ′ = 1, i.e., the polar discontinuity
is fully screened by the carriers. For LAO/STO, this corre-
sponds to a carrier concentration of exactly half an electron
per unit-cell surface area. However, we have neglected the
formation energy of the carriers which appear the interface.
Including the cost of generating an electron-hole pair across a
gap �, the free energy is

Fσ (σ ′, E ′) = P2
s

ε

[
dc

d
σ ′ + 1

2
(1 − σ ′)2 − E ′(1 − σ ′)

]
, (5)

where dc = ε0�
Ps

is the critical thickness, above which it is
favorable for carriers to appear. Minimizing with respect to
σ ′ gives

σ ′(d, E ′) = 1 −
(

dc

d
+ E ′

)
(6)

which implies that the carrier concentration increases with the
thickness of the film, and can be tuned, and even switched on
or off with an electric field. When an electric field is applied,
the critical thickness for carriers to appear is

dc(E ′) = dc

1 − E ′ (7)

which can be reduced or increased, depending on the sign
of E ′; the sign convention used for electric field is so that
it is aligned with the polar discontinuity when positive. In
Fig. 2(a) we show the carrier concentration as a function of
thickness at zero field, and at positive and negative values of
E ′. When E ′ = 0, the appearance of carriers is as described

FIG. 2. (a) Carrier concentration as a function of thickness for
zero (black), positive, and negative (red) values of reduced field E ′.
When E ′ is positive, dc increases to dc+. When E ′ is negative, dc is
reduced to dc−, and σ ′ saturates to 1 at a second critical thickness.
(b) Reduced carrier concentration with applied field at different
thicknesses. The critical thickness d = dc is shown in black, and
the subcritical and supercritical thicknesses, d = 1

2 dc and d = 2dc,
respectively, are shown in red.

in Ref. [28]: σ ′ switches on at dc and approaches 1 asymp-
totically from below. When a negative field is applied, the
polar discontinuity enhanced, and the carrier transition occurs
at a reduced thickness. In this case there is a second critical
thickness where σ ′ reaches 1 and saturates:

dc,2(E ′) = −dc

E ′ . (8)

When E ′ = −1, the critical thicknesses are dc(−1) = dc
2

and dc,2(−1) = dc, i.e., the carriers appear at half the original
critical thickness and saturate at the original critical thickness.
When a positive field is applied, the polar discontinuity is
partially screened, and the critical thickness increases.

The other possibility is to fix the thickness and induce the
carriers with an applied field. From Eq. (7), at a fixed thickness
there is a critical field value for which the carriers appear:

E ′
c(d ) = 1 − dc

d
. (9)
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If d < dc, the film is subcritical and E ′
c(d ) < 0. If d � dc, the

carriers will already be present at zero field. Applying a pos-
itive field partially screens the polar discontinuity, reducing
the need for carriers. There is a second critical field value at
which the carrier concentration saturates:

E ′
c,2(d ) = −dc

d
(10)

which is always negative for finite d . We have the relation
between the two critical field values:

E ′
c(d ) − E ′

c,2(d ) = 1. (11)

The different scenarios for inducing or suppressing carriers
with an applied field are summarized in Fig. 2(b).

B. Coupling to tilts

In this section we consider the effect of coupling to homo-
geneous tilts on the formation of carriers. The simplest way
to consider this is to add the independent free energies of the
tilts and carriers plus a coupling term: F = Fσ + Fφ + Fσφ .

Bulk LAO undergoes a transition from cubic to rhombohe-
dral at TC ∼ 541 ◦C [58]. The tilt pattern observed is, in Glazer
notation [59], a−a−a−. For a thin film of LAO, the tilt pattern
changes to a−a−c0 due to the tensile biaxial strain imposed
by clamping to the STO substrate [60,61]. If a compressive
biaxial strain were applied by using a substrate with a smaller
lattice constant than LAO, the observed tilt pattern changes
to a0a0c− [60]. For simplicity we assume that the thin film
undergoes a simple displacive transition from untilted to tilted
below some temperature TC . Thus, the free energy of tilts can
be described by a double well:

Fφ (φ′, T ) = 1

2
X −1

φ

[
1

4
φ′4 − 1

2

(
1 − T

TC

)
φ′2

]
, (12)

where φ′ = φ

φ0
is the tilt angle in units of φ0, the bulk equilib-

rium tilt angle, and X −1
φ is the curvature about the minima of

the double well, in units of energy per unit volume, playing
the role of an inverse susceptibility.

The simplest coupling we can introduce is a biquadratic
coupling between the tilts and the polar mode [51,62,63]:

Fσφ = 1

2
Aφ′2

(Efilm(σ ′)
Ps/ε

)2

, (13)

where A is the biquadratic coupling coefficient, in units of
energy per unit volume. Combining Eqs. (5), (12), and (13),
the total free energy is

Ftot = P2
s

ε

[
dc

d
σ ′ + 1

2

(
1 + A

P2
s /ε

φ′2
)

(1 − σ ′ − E ′)2
]

+ 1

2
X −1

φ

[
1

4
φ′4 − 1

2

(
1 − T

TC

)
φ′2

]
. (14)

Note that there are three independent energy scales X −1
φ , P2

s
ε

and A, corresponding to the tilts, the polar discontinuity, and
the biquadratic coupling, respectively.

Setting T = 0 and minimizing Eq. (14) with respect to σ ′
and φ′, we get

φ′ =
√

1 − 2AXφ (1 − σ ′ − E ′)2,

σ ′ = 1 − E ′ − dc/d

1 + A
(P2

s /ε)φ
′2 . (15)

Note that when we set A = 0, we recover the solutions of the
uncoupled order parameters: Eq. (6) for σ ′ and φ′ = 1. Equa-
tion (15) is a pair of coupled equations which does not have
analytic solutions. However, we can use physical constraints
to understand the behavior of σ ′ and φ′ upon coupling. First,
the square of the tilts cannot be negative:

φ′2 = 1 − 2AXφ (1 − σ ′ − E ′)2 � 0

⇒ 1 − E ′ − 1√
2AXφ

� σ ′ � 1 − E ′ + 1√
2AXφ

. (16)

Note that Eq. (16) provides bounds on E ′ since the upper
bound must be greater than or equal to 0, and the lower bound
must be less than or equal to 1:

− 1√
2AXφ

� E ′ � 1 + 1√
2AXφ

(17)

although the upper bound is redundant because
σ ′(E ′ > 1) < 0, which is unphysical. The lower bound
in Eq. (16) can also lead to situations where σ ′ < 0. This
leads to a change in behavior when the following condition
relating the coefficients X −1

φ and A is held:

A = 1

2(1 − E ′)2
X −1

φ . (18)

Above this line, for σ ′ = 0 we would have φ2 < 0, so the
tilts must be zero in the absence of carriers. Thus, the carriers
will appear at dc as in the uncoupled model, and the tilts will
appear at some thickness, which we call dφ , which is greater
than dc. Below this line, there are finite tilts in the absence
of carriers. In this case, carriers appear earlier at dφ < dc,
facilitated by a change in the tilts.

To summarize, above the straight line in Eq. (18), there
are two possibilities: an uncoupled appearance of carriers at
dc and a kink in the carrier concentration facilitated by the
appearance of tilts at dφ > dc. Below the line, both order
parameters appear simultaneously at dφ < dc, i.e., there is one
critical thickness which is reduced by tilting.

While the uncoupled carrier transition at dc is always con-
tinuous, we can investigate whether the transition at dφ is
continuous or discontinuous. If we insert the solution for φ′
into σ ′ in Eq. (15), we obtain a cubic equation

f (σ ′) = 2AXφ (1 − σ ′ − E ′)3 −
(

1 + P2
s /ε

A

)
(1 − σ ′ − E ′)

+
(

P2
s /ε

A

)
dc

d
= 0, (19)

the roots of which determine the value of σ ′. We cannot
obtain the roots analytically, but we can plot f (σ ′) at different
thicknesses and gain some insight about the transition (see
Fig. 3).
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FIG. 3. Sketch of Eq. (19) for different values of thickness. The
black dots mark the maxima and minima of the curve, i.e., Eq. (20). A
nonzero carrier concentration is obtained when the polynomial has a
root between 0 and 1, indicated by the red dots. For the highest curve,
there is no root between 0 and 1, so the σ = 0. When σ ′

min crosses the
zero axis, we will have σ > 0. Since σ ′

min > 0, σ jumps from zero to
a positive value, and the transition is discontinuous. As the curve is
shifted further downwards, the root moves to the right until it reaches
1, where it saturates.

Since d only appears in the constant term, the curve is
shifted up or down by changing thickness, and the positions
of the extrema are unaffected. The maximum and minimum
are uniquely determined by the energy densities X −1

φ , A P2
s
ε

,
and the field strength E ′:

σ ′
min/max = 1 − E ′ ±

√
1

6AXφ

(
1 + P2

s /ε

A

)
. (20)

Again, Eq. (20) leads to bounds on the applied field:

−
√

1

6AXφ

(
1 + P2

s /ε

A

)
� E ′ � 1 +

√
1

6AXφ

(
1 + P2

s /ε

A

)
(21)

and again the upper bound is redundant. Equation (20) pro-
vides a clear picture of how the carrier transition occurs:
the curve in Eq. (19) is shifted by changing d , and carriers
appear when there is a root between 0 and 1. If σ ′

min < 0, the
carriers appear continuously and if 0 < σ ′

min < 1 they appear
discontinuously. Thus, σ ′

min = 0 defines a boundary between
first- and second-order transitions:

6(1 − E ′)2A2 − X −1
φ

(
A + P2

s

ε

)
= 0 (22)

which is quadratic in A and has one positive solution:

A = 1

12(1 − E ′)2
X −1

φ

⎛
⎝1 +

√√√√1 + 24(1 − E ′)2

(
P2

s /ε
)

X −1
φ

⎞
⎠.

(23)

Above this curve, the transition at dφ is discontinuous and
below it is continuous. Combining Eqs. (18) and (23) results

FIG. 4. Diagram summarizing the coupled transitions of carriers
and tilts. Region I, the line A = 0, describes the uncoupled order
parameters. The tilts and carriers appear simultaneously in regions II
(continuous) and IV (discontinuous). The tilts appear after the carri-
ers in regions III (continuous) and V (discontinuous). First-principles
calculations, summarized in Table I, were used to place LAO/STO
on the diagram. The smaller dots show the effect of applying a small
amount of biaxial strain.

in four different possible sequences of transitions, depending

only on the energy densities X −1
φ , P2

s
ε

, A, and the field E ′.

C. Transitions with thickness: Zero field

At zero field, Eqs. (18) and (23) become

A = 1

2
X −1

φ ,

A = 1

12
X −1

φ

⎛
⎝1 +

√√√√1 + 24

(
P2

s /ε
)

X −1
φ

⎞
⎠ (24)

and the appearance of carriers and tilts depends only on the

energy densities X −1
φ , P2

s
ε

, A. These transitions are summarized
in Fig. 4. The two lines in Eq. (24) intersect at a tetracritical
point:

A∗ = P2
s

2ε
,

X −1
φ

∗ = P2
s

ε
. (25)

In Fig. 5 we plot the order parameters as a function of thick-
ness in each region of Fig. 4, as well as contours of the total
free energy as a function of σ ′ for several thicknesses.
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FIG. 5. Summary of the carrier transitions with film thickness for the four coupled regions in Fig. 4. The left panel for each region is an
order-parameter plot of φ′ and σ ′ with thickness. The critical thickness from the uncoupled theory is dc, and the additional critical thickness at
which the tilts switch on or jump is dφ . The right panel shows an effective theory Feff(σ ′), obtained by using Eq. (15) to write Eq. (14) solely in
terms of σ ′. Several energy curves are shown for different thicknesses in each panel, and the dashed line shows a continuation of the uncoupled
theory. The value of σ ′ at each value of d is given by the horizontal position of the minimum on each curve.

D. Transitions with thickness: Nonzero field

At a finite applied field, the different possible transitions
with thickness are determined by the lines

A = 1

2(1 − E ′)2
X −1

φ ,

A = 1

12(1 − E ′)2
X −1

φ

⎛
⎝1 +

√√√√1 + 24(1 − E ′)2

(
P2

s /ε
)

X −1
φ

⎞
⎠
(26)

with a tetracritical point

A∗ = 1

2

P2
s

ε
,

X −1
φ

∗ = (1 − E ′)2 P2
s

ε
. (27)

Interestingly, Eq. (27) reduces to Eq. (25) when E ′ = 0,+2,
although E ′ = +2 is not physical. A positive field moves the
tetracritical point to the left, making region II the largest
region as E ′ → 1. A negative field moves the tetracritical point
to the right. Thus, using a negative or positive field, the bound-
ary lines can be moved, deforming the regions, and it may be
possible to tune the order of the carrier and tilt transitions with
thickness at a polar-nonpolar perovskite interface. The phase
transition diagram is sketched in Fig. 6 for E ′ = −0.2. We can
see that the tetracritical point moves to the right, changing the
positions of the regions.

FIG. 6. Phase transition lines at E ′ = −0.2. A positive field
makes them move up and a negative field makes them move down. So
it might be possible to tune the transitions with thickness by applying
a fixed field. The dashed lines show the boundaries between regions
at zero field.
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E. Transitions with temperature

In this section we investigate the possibility of inducing a
carrier transition with temperature. When the order parame-
ters are uncoupled, at a nonzero temperature we have

σ ′(d ) = 1 − dc

d
,

φ′(T ) =
√

1 − T

TC
, (28)

where we set E ′ = 0 for simplicity. For nonzero A, minimizing
Eq. (14) gives

φ′ =
√(

1 − T

TC

)
− 2AXφ (1 − σ ′)2,

σ ′ = 1 − 1

1 + A
(P2

s /ε)φ
′2

dc

d
. (29)

If we require that φ2 � 0 as before, we get

1 − 1√
2AXφ (T )

� σ ′ � 1 + 1√
2AXφ (T )

, (30)

where Xφ (T ) = (1 − T
TC

)−1Xφ . As in Eq. (16), the inequality
on the left-hand side can lead to situations where φ2 < 0. This
implies that there is an additional critical temperature T ′

C :

T ′
C ≡ TC (1 − 2AXφ ). (31)

This is the reduced critical temperature of the thin film, a
phenomenon which is typically seen in phase transitions when
going from bulk to thin films [64–67]. Interestingly, we have
T ′

C = 0 when

A > 1
2 X −1

φ , (32)

i.e., there is no tilt transition at all. This is the same straight
line obtained for transitions with thickness and applied field
at zero temperature. However, it has a different meaning for
transitions with temperature: below the line there is a tilt
transition at a reduced critical temperature T ′

C , and above the
line there is no tilt transition. There is a second transition
temperature T ′′

C below which the carriers appear. Inserting φ′
into σ ′ in Eq. (29) and letting σ ′(T ′′

C ) = 0, we get

T ′′
C ≡ T ′

C − TC

(
P2

s /ε

A

)(
dc

d
− 1

)
(33)

We can see that T ′′
C < T ′

C for subcritical films, and T ′′
C = T ′

C
when d = dc. Thus, two transitions are possible by decreasing
temperature in subcritical films and only one transition is pos-
sible otherwise. Additionally, it is possible for the transition
at T ′′

C to be first or second order. Inserting φ′ into σ ′ as before,
we obtain another cubic equation in σ ′:

fT (σ ′) = 2AXφ︸ ︷︷ ︸
�

(1 − σ ′)3 −
(

1 − T

TC
+ P2

s /ε

A

)
︸ ︷︷ ︸

�(T )

(1 − σ ′)

+
(

P2
s /ε

A

)
dc

d
= 0 (34)

FIG. 7. Phase transition diagram for transitions driven by tem-
perature. The line A = 0 describes the uncoupled order parameters
(region I). The straight line is the same as in Fig. 4. Above this line,
no tilt transitions with temperature are possible: T ′

C = 0. The curved
line is given by Eq. (38) and determines whether the carrier transi-
tion is continuous (below) or discontinuous (above). The number of
transitions, i.e., whether or not T ′

C and T ′′
C are different, is determined

by the ratio d
dc

only: if d
dc

< 1 there are two transitions and if d
dc

� 1
there is only one transition.

with extrema

σ ′
max/min(T ) = 1 ±

√
�(T )

3�
. (35)

In the previous section, the positions of the extrema were
not dependent on the quantity that induced the transitions.
Assuming the transition occurs at some temperature T ∗, we
can determine the character of the transition by requiring that
fT (σmin(T ∗)) = 0,

− �

(√
�(T ∗)

3�

)3

+ �(T ∗)

(√
�(T ∗)

3�

)(
P2

s /ε

A

)
dc

d
= 0

⇒ �(T ∗) = 3

√
27

4

[(
P2

s /ε

A

)
dc

d

]2

� (36)

and also requiring that σmin(T ∗) > 0,

1

4

(
P2

s /ε

A

)
dc

d
< �. (37)

Thus, we get

A >

√
1

4

dc

d

(
P2

s

ε

)
X −1

φ (38)

The lines in Eqs. (32) and (38) form a diagram for transitions
with temperature, shown in Fig. 7. There are only two distinct
regions (II and III), but the number of transitions in each is
determined by the ratio d

dc
, so four different types of carrier

transitions are possible. Plots of the order parameters for the
four different scenarios are shown in Fig. 8.
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FIG. 8. Summary of the carrier transitions with temperature for the two coupled regions in Fig. 7. The left-hand side shows transitions for
thin films at the uncoupled critical thickness (d = dc) and the right-hand side shows transitions for subcritical thin films (d = 1

2 dc). The right
panels shows energy contours for different temperatures and are as described in Fig. 5, but an effective theory in φ′ instead of σ ′ is used.

F. Transitions with applied field

For transitions with applied field, note from the left-hand
side of Eq. (16) that if σ = 0, there is a critical field value at
which the tilts switch on or off:

Eφ = 1 − 1√
2AXφ

� 0 (39)

We get Eφ = 0 when A = 1
2 X −1

φ , which is the same condition
for transitions with thickness at zero field. In order to deter-
mine whether transitions with applied field are continuous
or discontinuous, we must solve Eq. (19), assuming there is
some critical field at which carriers appear, i.e., we must solve
f (σ ′

min(E ′∗)) = 0 for E ′∗ in a similar manner to the previous
section. The boundary between continuous and discontinuous
transitions of the tilts with applied field is

X −1
φ = 27

2

(dc/d )2(
1 + P2

s /ε

A

)3

1

A
(40)

which in general depends on the ratio d
dc

. For d
dc

= 1, Eq. (40)

touches the straight line at the point (A∗, X −1∗
φ ). When d

dc
< 1,

the two lines intersect before (A∗, X −1∗
φ ). When d

dc
> 1, the

two lines never intersect. The diagram describing the different
possible transitions with applied field is sketched in Fig. 9 for
d
dc

= 1, and plots of the order parameters for each region are
shown in Fig. 10. In all except region II, the tilts are zero at
zero field. When a negative field is applied, the carriers appear
as in the uncoupled model. In region II the carriers grow
linearly with a negative applied field, and can be switched off

with a positive applied field. In all regions, tilts appear when
a positive field is applied because a positive field suppresses
the polar mode. Although first-order transitions of the tilts
should be observed in regions III and IV, we did not find any
first-order transitions for physically meaningful values of the
order parameters or applied field in region III. A first-order
transition of the tilts and carriers for a positive applied field
was observed in region IV, however.

III. COUPLING TO INHOMOGENEOUS TILTS

We can allow for inhomogeneous tilts by generalizing from
a Landau theory to a Ginzburg-Landau theory, i.e., the free
energy is expanded in powers of both the order parameter
and its gradient. We do this following the methodology which
has been used to describe semi-infinite ferromagnetic [64],
ferroelectric [65,67,68], and superconducting [66] systems
in which the order parameter is inhomogeneous due to the
presence of a free surface. Considering only the tilts in the
thin film, Eq. (12) becomes an integral over the volume
of the film:

F′GL
φ = 1

V

∫
V

[
λ2(∇φ′(r))2 + 1

4
φ′(r)4 − 1

2
φ′(r)2

]
dV, (41)

where F′ ≡ F/ 1
2 X −1

φ and λ > 0 is the correlation length of the
tilts, which sets the length scale for the variations of the tilts
[see Fig. 11(a)]. The correlation length depends in general on
the temperature of the system, but here we assume a fixed
value for simplicity. Equation (41) is written so that each term
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FIG. 9. Diagram for transitions with applied field. The curved
line depends on the ratio d

dc
. The dashed black line is d

dc
= 1, which

touches the straight line at (A∗, X −1∗
φ ). Curves for d

dc
= 0.8, 1.2 are

also sketched. First-order transitions should be observed below the
curved line but above the straight line, i.e., regions III and IV.

in the integrand is dimensionless, and the free energy is in
units of 1

2 X −1
φ , the energy scale of the homogeneous tilts.

Next, we reintroduce the carriers. We take the order param-
eter to be the carrier concentration averaged over an in-plane
unit cell: σ ′ ≡ 〈σ ′〉 = 1

A

∫
σ ′(x, y)dA. If we assume that the

in-plane variance in σ ′ is small, so that 〈(1 − σ ′)〉2 ≈ (1 −

FIG. 10. Summary of the carrier transitions with applied field for
the four coupled regions in Fig. 9. The dashed blue line shows the
value of σ ′ without coupling to tilts. All plots are for d

dc
= 1, and the

following coordinates in Fig. 9: (a) X −1
φ = 1, A = 0.25, (b) X −1

φ =
0.25, A = 0.15, (c) X −1

φ = 1.75, A = 1, (d) X −1
φ = 1, A = 1.

FIG. 11. Sketch of inhomogeneous tilts in a thin film grown on
a substrate, e.g., LAO/STO, and the effect of (a) λ, the correlation
length of the tilts in the LAO film (b) δsurface, the relative difference
in the energy of the tilts at the surface with respect to the bulk, and
(c) δinterface, the relative difference in the energy of the tilts at the
interface with respect to the bulk. The effect of the energetics of the
tilts in the substrate may be absorbed into δinterface.

〈σ ′〉)2, then F′GL
σ = F′

σ . It should be noted that this is a sig-
nificant assumption, especially in the low carrier regime.

For inhomogeneous tilts, the biquadratic coupling term
becomes

F′GL
σφ = 1

V

∫
1

2
(2AXφ )φ′(r)2(1 − σ ′)2dV, (42)

which, since we assume the in-plane variance in σ ′ is small,
reduces to

F′GL
σφ = 1

2 (2AXφ )(1 − σ ′)2〈φ′2〉, (43)

where

〈φ′2〉 = 1

V

∫
φ′(r)2dV (44)

is the mean of the square of the tilt throughout the film.
Under these assumptions, the free energy can be minimized

with respect to σ ′ as in the homogeneous case, yielding

σ ′ = 1 − 1

1 + A
P2

0 /ε
〈φ′2〉

(
dc

d
+ E ′

)
(45)
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which is the same as the second line of Eq. (15), but with
φ′2 → 〈φ′2〉. We only consider transitions with thickness for
illustrative purposes, although it would be simple enough to
include an applied field as we did in the previous section.

For the tilts, we have

F′GL
φ + F′GL

σφ = 1

V

∫
V

[
λ2(∇φ′)2 + 1

4
φ′4

−1

2
(1 − 2AXφ (1 − σ ′)2)φ′2

]
dV. (46)

Following a similar treatment of ferroelectric thin films with
inhomogeneous polarization [67], we split the free energy into
interior and surface contributions: FGL = FGL

interior + FGL
boundary,

where FGL
φ,boundary is given in terms of an expansion of a local

order parameter at the boundaries. First, we use the reverse
product rule to rewrite the gradient term:

(∇φ′)2 = ∇ · (φ′∇φ′) − φ′∇2φ′, (47)

then we use Stokes’ theorem on the first term in Eq. (47):∫
(∇φ′)2 dV =

∫
[∇ · (φ′∇φ′) − φ′∇2φ′] dV

=
∫

φ′∇φ′ dS −
∫

φ′∇2φ′ dV, (48)

where for a thin film on a substrate the surface integral has
two terms: one at the free surface and one at the interface with
the substrate:

F′GL = 1

V

∫
V

[
1

4
φ′4 − 1

2
(1 − 2AXφ (1 − σ ′)2)φ′2

− λ2φ′∇2φ′
]

dV + 1

V

∫
s
[λ2(n̂ · ∇φ′)φ′] dS

+ 1

V

∫
i
[λ2(n̂ · ∇φ′)φ′] dS, (49)

where s and i refer to the surface and interface, respectively.
Note that the surface free energies are also in units of 1

2 X −1
φ ,

and the surface integrals are dimensionless.
Next, we claim that there must be a difference in the en-

ergies at the boundaries compared to the interior of the film
[64,66,67], which can be described using an expansion of the
local order parameters at the boundaries:

F′GL
φ,boundary = 1

V

∫
s

[
λ2(n̂ · ∇φ′)φ′ + 1

2
δsφ

′2
]

dS

+ 1

V

∫
i

[
λ2(n̂ · ∇φ′)φ′ + 1

2
δiφ

′2
]

dS. (50)

The quadratic coefficient of the surface order parameter de-
scribes the relative difference between the energy of the tilts
at the surface and the energy per unit volume of the tilts in the
bulk, and therefore must have units of length. We call this the
extrapolation length δ. δs and δi are the surface and interface
extrapolation lengths, respectively, which describe the differ-
ence in energy at the surface and interface with respect to the
bulk [see Figs. 11(b) and 11(c)]. In general, higher-order terms
could be included in this expansion, but we assume that the
leading term is the quadratic one [67]. Also, the boundaries
may have a temperature dependence which differs from the

bulk, which could lead to a change in sign of the extrapolation
lengths.

Minimizing the total free energy in the bulk and at both
boundaries, we get

φ′3 − (1 − 2AXφ (1 − σ ′)2)φ′ − λ2∇2φ′ = 0,

(n̂ · (∇φ′)) + δi

λ2
φ′ = 0, z = 0

(n̂ · (∇φ′)) + δs

λ2
φ′ = 0, z = d

σ ′ = 1 − 1

1 + A
P2

0 /ε
〈φ′2〉

(
dc

d
+ E ′

)
. (51)

This is the generalization of Eq. (15) but with inhomogeneous
tilts. The expression for σ ′ is almost identical, but with the
square of the tilt replaced with the mean of the square of
the tilt throughout the film. φ′ is described by a second-order
differential equation plus two boundary conditions, one for
the free surface and one for the interface. These boundary
conditions are referred to as Robin boundary conditions, i.e., a
linear combination of the tilt and its gradient at each boundary.
The equations for φ′ and σ ′ are again self-consistent, making
them difficult to solve. In the previous section we used phys-
ical constraints to determine the character of the carrier and
tilt transitions under various conditions, summarized in Fig. 4,
but this would be difficult or impossible for Eq. (51). Thus,
our only option is obtaining numerical solutions, solving for
σ ′ and φ′ iteratively until both are converged below a suitable
tolerance. This approach was used in the previous section to
obtain the order parameter plots shown in Figs. 5, 8, and 10.

Equation (51) is solved as follows: the tilt profile inside the
film is obtained by solving the first three lines using finite-
difference methods. The mean of the tilt squared in the film
is then used to calculate the carrier concentration, which is
reinserted into the ordinary differential equation (ODE). The
two are solved self-consistently until their relative changes
between successive iterations are below a suitable tolerance.

For a given set of system parameters, we can obtain order-
parameter plots as a function of thickness or applied field,
similar to Figs. 5, 8, and 10. The main difference with the
inhomogeneous tilts is that λ, δs, and δi need to be specified,
in addition to X −1

φ , A, and dc. Thus, for inhomogeneous tilts,
Fig. 4 becomes five dimensional, and systemically navigating
such a diagram would be impractical.

It is also difficult to estimate λ, δs, and δi. Previous stud-
ies have fixed λ to a small number of unit cells [65]. In
Ref. [51], λ is estimated to be around 1–2 unit cells in bulk
LAO from calculations of the dispersion of the phonon branch
corresponding to the a−a−c0 tilt. To our knowledge, it is not
possible to directly measure the extrapolation lengths. In prin-
ciple, one could fit measurements of tilts in a thin film, either
from experiment or first-principles calculations, to Eq. (51),
but the tilts at the boundaries are strongly affected by both the
correlation length and the extrapolation length, which would
lead to overfitting.

It is helpful to note that, since we only consider indi-
rect coupling, the carrier concentration depends only on the
mean of the square of the tilts, and not on the specific shape
of the tilts. Thus, we can understand the influence of the
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FIG. 12. Order-parameter plots in the four coupled regions in
Fig. 4, for both homogeneous (dashed lines) and inhomogeneous
(solid lines) tilts. (a) Region II (red): X −1

φ = 1.36454, A = 0.407.
(b) Region III (green): X −1

φ = 0.2, A = 0.5. σ and σGL are identi-
cal between dc and dφ . (c) Region IV (yellow): X −1

φ = 3, A = 1.4.
(d) Region V (blue): X −1

φ = 0.5, A = 1.5. σ and σGL are identical
between dc and dφ . In all regions, dc = 2 unit cells.

inhomogeneity of the tilts by fixing the extrapolation lengths
and allowing the correlation length to change.

First, we examine the behavior of the order parameters in
the different regions in Fig. 4 and compare with the results
obtained for homogeneous tilting. For each region, we set
λ = 2 unit cells, dc = 2 unit cells, the thickness at which
a density of trapped Ti 3d-like states has been observed
in LAO/STO [69–72], δi = 5 unit cells, and δs = 0. The
order-parameter plots are shown in Fig. 12 (solid lines), along-
side the corresponding result from the homogeneous theory
(dashed lines). We see that, for this choice of parameters, all
of the points except the one in region V shift to region III when
the tilts become inhomogeneous. In all cases, the carriers
appear continuously at dc, and dφ increases with respect to the
corresponding scenario from the homogeneous theory. This
makes sense since at smaller thicknesses there would be a
large gradient in the tilts and hence a large energy penalty.
Thus, the tilts can only appear at larger thicknesses, where the
magnitude is roughly constant inside the bulk of the film and
only changes in a small region near both boundaries.

Next, we examine the effect of changing λ. We found that
for regions III and V, the transitions remain in regions III and
V, but the value of dφ is sensitive to λ. For regions II and
IV, the points move through different regions as λ decreases,
shown in Figs. 13 and 14, respectively. As λ decreases, and
there is less of a penalty for the inhomogeneity of the tilts, dφ

decreases, and eventually the order of the transitions reverses,
which occurs continuously in region II [Figs. 13(c) and 13(d)]
and discontinuously in region IV [Fig. 14(d)]. These types
of transitions do not correspond to any of regions in Fig. 4,
so we label them regions VI and VII. In region VI, tilts
first appear continuously at dφ , and then carriers at a critical
thickness between dφ and dc. In region VII, the order of the

FIG. 13. Order-parameter plots in region II for several values of
λ, for both homogeneous (dashed lines) and inhomogeneous (solid
lines) tilts. (a) λ = 2 unit cells, (b) λ = 1 unit cell, (c) λ = 0.5 unit
cells, and (d) λ = 0.5 unit cells.

transitions with thickness is the same, but the carriers appear
discontinuously.

In Fig. 15 we summarize the transitions observed in the
inhomogeneous theory. Regions III and V remain unchanged,
with the exception that dφ is renormalized by λ. For regions
II and IV, the type of transition can change, depending on the
value of λ (and the other parameters). The different transi-
tions that can occur by changing λ but fixing the rest of the
parameters are shown. For λ → ∞, the homogeneous case
is realized. As λ decreases, the character of the transition
changes. For sufficiently small λ, two entirely new types of

FIG. 14. Order-parameter plots in region IV for several values of
λ, for both homogeneous (dashed lines) and inhomogeneous (solid
lines) tilts. (a) λ = 2 unit cells, (b) λ = 1 unit cell, (c) λ = 0.5 unit
cells, and (d) λ = 0.5 unit cells.

094106-11



DANIEL BENNETT et al. PHYSICAL REVIEW B 106, 094106 (2022)

FIG. 15. Summary of the additional carrier and tilt transitions
which can occur when the tilts are inhomogeneous. The sequence
of transitions which can occur in regions II and IV by changing λ

(fixing the rest of the parameters) are shown below and above the
diagram, respectively.

transitions occur, which we label region VI [Figs. 13(c) and
13(d)] and region VII [Fig. 14(d)].

IV. DISCUSSION AND CONCLUSION

In this paper, we introduced a phenomenological theory
which considers the influence of homogeneous tilts on the
appearance of carriers at polar-nonpolar perovskite interfaces.
We show that, upon coupling, four new types of transitions
of tilts and carriers with film thickness or applied field are
possible, depending only on the energetics of the tilts, the
polar discontinuity, and the biquadratic coupling between the
tilts and the polar mode. These include the simultaneous ap-
pearance of tilts and carriers at a reduced thickness compared
to the uncoupled theory, which can be either continuous or dis-
continuous, and separate transitions, with carriers appearing
first and then tilts, the second transition being either continu-
ous or discontinuous.

First-principles calculations of bulk LAO were performed
to predict the character of the transitions at the LAO/STO
interface. For various exchange-correlation functionals, all of
the calculations predicted that at zero temperature and for
homogeneous tilts, LAO/STO lies in region II of Fig. 4,
i.e., a single continuous transition of both tilts and carriers.
We also investigated the possibility of tuning the character of
the transition via biaxial strain by changing the in-plane lattice

constant by up to ±1% and repeating the calculations. We
found that the position of the point in Fig. 4 can be changed by
adjusting the strain, but not by enough to change the character
of the transitions. However, in general, if a system were closer
to a boundary between regions, it may be possible to change
the regions using biaxial strain. Additionally, if compressive
strain is applied to aLAO, the tilt pattern changes to a0a0c−
[60], which would change the competition with the polar
mode. This could be achieved by using a nonpolar perovskite
with a smaller lattice constant than LAO as the substrate
material.

In addition to changing the strain and the tilt pattern as
mentioned above, changing the materials which form the
polar-nonpolar interface can also change the chemistry at
the interface, and hence the polar discontinuity. Different
interfaces have been investigated experimentally [41,73–75],
computationally [76–78], and high-throughput searches for
new interfaces have been done [79]. Carrier transitions have
also been observed at spinel-perovskite interfaces [80–82].
Thus, it may be possible to observe a wide variety of be-
havior in the carrier transitions at different polar-nonpolar
perovskite interfaces for different combinations of materi-
als. More specifically, by estimating where different systems
would lie on Fig. 4, it may be possible to establish an atlas of
transitions across different possible polar-nonpolar perovskite
interfaces.

We also showed how the appearance of carriers can be
tuned via temperature through the temperature dependence of
the tilts. At a finite temperature, the curvature of the tilt double
well is X −1

φ (T ) = X −1
φ (1 − T

TC
), so increasing the temperature

would move any point on the diagram in Fig. 4 to the left. We
would expect the dependence of the biquadratic coupling term
A(T ) on temperature to be similar but weaker. Thus, it may be
possible to move a system from one point in the diagram to
another if the initial point is sufficiently close to a boundary.
In Ref. [61], when grown on a substrate of cubic STO, LAO
was found to undergo a transition from untilted to tilted below
695 ◦C for a thickness of 24 unit cells and 540 ◦C for a thick-
ness of 9 unit cells, where both samples were under the same
strain conditions. Because both films were supercritical there
was no carrier transition associated with the tilt transitions,
but their observations are in agreement with our prediction
of a second transition temperature T ′′

C , which is sensitive to
the ratio d

dc
. Assuming that the films were sufficiently thick

so that the effect of gradients is negligible, this may provide
evidence for the additional transition temperature arising from
the coupling between tilts and carriers.

We also investigated the influence of the inhomogeneity of
the tilts on the coupling between tilts and carriers. Upon cou-
pling to inhomogeneous tilts, the diagram in Fig. 4 becomes
five dimensional, with additional axes for the correlation
length of the tilts in the polar film, and extrapolation lengths
for the interface and the free surface of the film. Practically,
it would be very demanding to explore this five-dimensional
space numerically, and to our knowledge, it cannot be done
analytically. However, since the biqaudratic coupling between
tilts and carriers only depends on the mean of the tilt squared
throughout the film, we can examine the influence of inhomo-
geneous tilts by examining the effect of the correlation length
on transitions in each region in Fig. 4, with the rest of the
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parameters fixed. We found that, for the regions correspond-
ing to the separate appearances of tilts and then carriers, the
order of the transitions is unaffected by the correlation length,
except for the value of the second transition shifting slightly.
For the regions corresponding to simultaneous transitions, we
found that a finite correlation length can actually change the
character of the transition, and can lead to two different types
of transitions which are not possible for homogeneous tilts,
where the tilts appear before carriers, either continuously or
discontinuously.

Due to the large number of system parameters required,
many of which cannot be directly measured, it remains
difficult to conclusively determine the order of the carrier
transition at polar-nonpolar perovskite interfaces. How-
ever, we have shown that, even using a phenomenological
description, an extremely rich variety of behavior is possible
for the appearance of carriers at polar-nonpolar perovskite
interfaces. This includes first-order transitions, which have
been observed experimentally [2], and have been claimed to
occur in other theoretical studies [42], but without a detailed
explanation.
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APPENDIX: FIRST-PRINCIPLES CALCULATIONS

We can approximate X −1
φ , A, and P2

s
ε

for LAO/STO by
performing first-principles calculations using bulk LAO, biax-
ially strained to the lattice parameter of cubic STO. We follow
the methodology in Ref. [51], where similar calculations were
performed.

First-principles density functional theory (DFT) calcu-
lations were performed using the ABINIT code [83–87],
version 8. We used both Perdew-Burke-Edwards (PBE) [88]
and PBEsol [89,90] exchange-correlation functionals within
the generalized gradient approximation (GGA) using PSML

[91] norm-conserving [92] pseudopotentials, obtained from
pseudo-dojo [93]. We also performed calculations using the
Perdew-Wang (PW92) [94] exchange-correlation functional
within the local density approximation (LDA), using the pro-
jector augmented-wave method [95,96] (PAW) in order to
compare to Ref. [51]. For the electronic configurations, we
included 11 valence electrons for La (5s25p65d16s2), 11 for
Al (2s22p63s23p1), and 6 for O (2s22p4), explicitly including
the semicore 2s22p6 states in the valence configuration of Al.
When the semicore electrons were included for Al, a cutoff of
2500 10V was required to adequately converge the total energy

FIG. 16. Polarization as a function of applied electric field, from
the PBEsol calculations. The solid lines are results obtained from the
untilted system and the dashed lines are results obtained for the tilted
system. The blue lines indicate the static case, where the ions were
fixed and the red lines indicate the relaxed case, where a geometry
relaxation was performed at each value of E .

of the 5-atom unit cell. A Monkhorst-Pack k-point grid [97] of
6 × 6 × 6 was used for the 5-atom calculations and a grid of
4 × 4 × 3 was used for the 20-atom calculations.

We first optimized the geometry of cubic STO in order to
obtain the lattice parameter aSTO. The in-plane lattice param-
eters of LAO were then fixed to aSTO, and the out-of-plane
lattice parameter c was allowed to relax. It was found that the
lattice parameter was not affected much more by the tilt or
the electric fields applied, so it was fixed to the value obtained
in the untilted case in the more time-consuming calculations.
The untilted calculations were performed using the 5-atom
primitive cell. To allow for tilts, we used a

√
2 × √

2 × 2
supercell containing 20 atoms, which is the smallest cell re-
quired to allow for the a−a−c0 tilt pattern which appears in
LAO when biaxially strained to aSTO [60]. The depth of the
tilt double well E0 is the energy difference per 5-atom unit
cell between the tilted and untilted systems. Using Fφ (φ′ =
±1) = E0, we get

X −1
φ = −8E0. (A1)

E0 and X −1
φ are given in Table I for all of the functionals

used, in units of meV/
5, where 
5 is the volume of the
5-atom unit cell. The LDA results are close to those obtained
in Ref. [51], but the results obtained using PBE and PBEsol
differ by a factor of ∼2.

A and P2
s
ε

were obtained by calculating the dielectric con-
stants in the untilted and tilted systems. This was done by
performing a set of bulk calculations using a finite electric
field parallel to the c axis [98–102]. In Ref. [51] a finite dis-
placement field was used [55], but either type of field can be
used to calculate A. The polarization, calculated using Berry
phases [103,104], was measured in the presence of a small
applied field E , with the ions both fixed and allowed to relax.
Plots of polarization as a function of applied field are shown
in Fig. 16. In Gaussian units, the relation between polarization
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TABLE I. Summary of results from first-principles calculations.

Functional aLAO (Å) aSTO (Å) c (Å) E0 (meV/
5) X −1
φ (meV/
5) ε5 ε20

P2
s

ε5
(meV/
5) A (meV/
5)

PAW LDA [51] 3.75 3.85 3.68 27.7 221.6 96.1
PAW LDA 3.75 3.86 3.67 35.9 287.8 26.1 425.7
PBE 3.81 3.93 3.72 60.5 483.9 40.4 26.5 268.9 141.2
PBEsol 3.77 3.89 3.69 54.2 433.8 34.6 24.6 317.9 129.4

and electric field, and dielectric constant is

Pi = χi jE j + O(E2),

εi j = 1 + 4πχi j . (A2)

The slope of P(E ) is reduced in the tilted case because the
tilts compete with the polar mode. For the static calculations,
the tilted and untilted systems gave identical results. When the
tilts are allowed to relax, the relation between P and E is

P(E, φ(E )) =
(

1

ε5
+ A

P2
s

φ′(E )2

)−1

E, (A3)

where ε5 is the dielectric constant of the untilted system. The
dielectric constant of the tilted system ε20 is obtained in the
limit E → 0:

1

ε20
= 1

ε5
+ A

P2
s

, (A4)

where we used φ′(E → 0) = 1. Rearranging Eq. (A4) gives

ε−1
20 − ε−1

5

ε−1
5

= A(
P2

s /ε5
) (A5)

which is exactly the vertical axis of the phase transition di-

agram in Fig. 4. Values of ε5, ε20, A, and P2
s

ε5
are given in

Table I for all of the functionals used. For the LDA (PAW)

calculations, the electric field calculations for the tilted system
failed to converge, so we used the value of A from Ref. [51] in
Fig. 4.

The results in Table I were used to place the LAO/STO
interface on the phase transition diagram in Fig. 4. Al-
though there is a relatively large distance between the three
points, each exchange-correlation functional predicts that the
LAO/STO interface is in region II, i.e., a single second-order
transition at a reduced critical thickness dφ . The difference in
LDA can be attributed to the shallower tilt double well. The
difference between PBE and PBEsol appears to arise from the
difference in the untilted dielectric constants.

We also performed calculations to investigate the effect of
strain on the carrier transition, using the PBEsol exchange-
correlation functional. Calculations were repeated but with
small amounts of compressive and tensile strain applied to
aSTO, up to ±1%. The results are included in Fig. 4, indicated
by the smaller dots. We found that a compressive strain moved
the point towards the origin and a tensile strain moved the
point up and to the right, although it appears that a signifi-
cantly larger amount of strain than the ones investigated here
would be required to change the order of the carrier transition.
It may be possible to change the character of the transitions
using biaxial strain for a system with a point which lies closer
to a boundary between regions, however.
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