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Yu-Shiba-Rusinov (YSR) states arise as subgap excitations of a magnetic impurity in a superconducting
host. Taking into account the quantum nature of the impurity spin in a single-site approximation, we study the
spectral properties of the YSR excitations of a system of magnetic impurity in a spin-split superconductor, i.e., a
superconductor in proximity to a ferromagnetic insulator at zero external magnetic fields. The YSR excitations of
this system exhibit a robust spin polarization that is protected from fluctuations and environmental noise by the
exchange field of the ferromagnetic insulator, which can be as large as a few Tesla. We compare the results of this
quantum approach to the classical approach, which conventionally predicts fully polarized YSR excitations even
in the absence of exchange and external magnetic field. Turning on a small magnetic field, we show the latter
splits the YSR excitations in the regime where the impurity is strongly coupled to the superconductor, whilst the
classical approach predicts no such splitting. The studied system can potentially be realized in a tunnel junction
connected to a quantum dot in proximity to a spin-split superconductor.
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I. INTRODUCTION

Magnetic impurities in superconductors often feature Yu-
Shiba-Rusinov (YSR) excitations. These subgap bound states
arise due to the exchange coupling between the impurity and
the superconductor [1–3]. Much of the recent effort devoted
to the study of these excitations is driven by experimental ad-
vances in scanning tunneling spectroscopy, which allow one to
access the spectral properties of YSR excitations with atomic-
scale resolution [4–6]. For example, from the spectrum and
spatial dependence of the YSR excitations, we can learn about
nonconventional pairing properties or the symmetry of the
Fermi surface of the host superconductor [7–9]. In addition
to magnetic impurities on the surface of superconductors, the
YSR excitations have also been investigated in superconduct-
ing devices with molecular junctions [10] as well as quantum
dots with superconducting leads [11–16].

In many theoretical treatments, including the pioneer-
ing works of Yu, Shiba, and Rusinov, magnetic impurities
are modeled as classical spins (see, e.g., Ref. [17] for
a review). Thus, the impurity is described as an external
scattering potential for the quasiparticles of the supercon-
ductor. The potential has an opposite sign for opposite
spin orientation along the spin-quantization axis, leading
to the two nondegenerate in-gap YSR excitations with op-
posite energy and full spin polarization. For this reason,
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systems with the YSR excitations are often proposed as
ideal platforms for superconducting spintronics and magnetic
characterization at the microscopic scale [18–20]. However,
this description often overlooks the quantum nature of the
spin degree of freedom of magnetic atoms, molecules, or
quantum dots [13,21–25]. Indeed, quantum (and thermal or
noise) fluctuations destroy the spin polarization of the YSR
excitations. Spin polarization can be restored by applying
external magnetic fields [26,27]. However, magnetic fields
applied to superconducting devices also have unwanted or-
bital effects, which may induce supercurrents and suppress
superconductivity.

In this paper, we propose using a ferromagnetic insulator
(FMI) adjacent to the superconductor to induce a finite spin
polarization of the YSR excitations. The FMI leads to an
effective exchange field of strength h in the superconduc-
tor in the absence of external magnetic field [28–31]. The
exchange field is induced by the magnetic proximity effect
at the FMI/superconductor interface [32,33], and leads to a
spin splitting equivalent to that of a magnetic field as large
as tens of Tesla without any orbital effects. To account for
quantum fluctuations in the spectrum of a magnetic impurity
coupled to such a spin-split superconductor, we extend the
single-site model used in Refs. [24,34,35]. This approach
provides an excellent qualitative description of the spectra
obtained experimentally [35]. It also captures the properties of
the ground state and low lying states of the system while being
computationally cheaper than the numerical renormalization
group (NRG) [27,36]. We demonstrate that the exchange
field h induced by the FMI suppresses fluctuations and leads
to a finite spin polarization of the YSR excitations without
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FIG. 1. Schematic picture of a possible realization of the studied
system. It consists of a superconductor in proximity to a ferromag-
netic insulator coupled to a quantum dot or a molecule that can be
modeled as a spin-S quantum impurity. The right normal metal is a
ferromagnetic tunneling contact to probe the spin polarization. An
external magnetic field B is applied in different directions.

introducing any spin splitting of the latter. In addition, if a
small external magnetic field is applied, we show that the YSR
excitations split only if the system is in the regime where
the impurity spin is strongly coupled to the superconductor.
In contrast, as we also show below, the classical description
of the impurity yields no such spin splitting of the YSR
excitations, the main effect of the external magnetic field
being a shift of the energy of the YSR peaks in the spectral
function.

For the sake of simplicity, we focus our analysis on a
spin- 1

2 impurity and isotropic exchange coupling between
the superconductor and the magnetic impurity. The latter
may correspond, for example, to a quantum dot coupled
to an FMI/superconductor system (see Fig. 1), which can
be realized in superconductor/semiconducting nanowire het-
erostructures in proximity to a FMI [37]. For other setups
relevant to magnetic atoms or molecules on the surface of su-
perconductors, our results can be straightforwardly extended
to account for larger impurity spins, single-ion anisotropy,
as well as anisotropic exchange [24,35]. The remaining sec-
tions of this paper are organized as follows: In the next
section, we introduce the model and describe the many-body
spectrum of the FMI/superconductor–quantum dot system
as a function of the exchange coupling, the exchange field,
and the external magnetic field. In Sec. III, we discuss the
spectral properties of the YSR excitations focusing on spin
polarization. Finally, we present our conclusions in Sec. IV.
Appendix A contains the details of the classical solution of the
model. In Appendix B, we provide the details of the analysis
of the spin polarization described in Sec. III.

II. MODEL AND MANY-BODY SPECTRUM

We consider a magnetic impurity in a spin-split super-
conductor as schematically shown in Fig. 1. The exchange
field h of the device is achieved by bringing a conventional
(s-wave) superconductor in proximity to a FMI. Assuming
that the thickness of the superconductor is smaller than the
superconducting coherence length, it is a good approximation
to consider a homogeneous exchange field h [31]. Thus, the
Hamiltonian of the system reads

H = H0 + HJ + HB, (1)

where

H0 =
∑
k,σ

ξkc†
k,σ

ck,σ + �
∑

k

(c†
k,↑c†

−k,↓ + H.c.)

−h
∑

k

(c†
k,↑ck,↑ − c†

k,↓ck,↓), (2a)

HJ = J
∑
k,σσ ′

c†
k,σ

S · sσσ ′ck,σ ′ , (2b)

HB = B · S. (2c)

Here, H0 describes a superconductor with mean-field pairing
potential of strength � and an exchange field h = hez along
the z axis; HJ is the isotropic exchange interaction between
the host superconductor and the magnetic impurity described
by the spin operator S with coupling strength J . Finally, HB

accounts for the Zeeman energy due to an external magnetic
field B = B(cos θ, sin θ ) where the angle θ (see Fig. 1) mea-
sures the tilt between the magnetic field and the z axis.

In Eq. (2), the operator c†
k,σ

(ck,σ ) creates (annihilates) an
electron with the momentum k, the spin state σ ∈ {↑,↓}, and
the electron dispersion (measured from the chemical poten-
tial) ξk, s being the Pauli matrices s = (sx, sy, sz ). We assume
an external magnetic field |B| � |h|. In the case of thin films
or wires, as considered here, the orbital effect of an external
in-plane magnetic field is negligibly small, while its coupling
to the impurity spin persists. As we discuss below, it can be
used as an additional probe into the properties of the YSR
excitations.

Furthermore, let us point out that the range of Zeeman
couplings analyzed in this paper is different from the regime
previously studied in Refs. [14,27]. References [14,27] con-
sider a system of a quantum dot coupled to a superconductor
in the regime when the external magnetic field couples to both
a superconductor and a quantum dot.

To solve the model in Eq. (1) we use two different ap-
proaches. On the one hand, we use a single-site model in
which the superconducting host is effectively modeled by a
single site but its coupling to the impurity spin is described
exactly by treating S as spin- 1

2 operator. On the other hand,
we use the classical description in which the superconductor
is treated as an extended system but the exchange coupling is
simplified by treating the impurity spin S as a classical vector.

In the single-site model, we simplify the Hamiltonian H
describing the system (2) to the following model:

H0 = �(c†
↑c†

↓ + H.c.) − h(c†
↑c↑ − c†

↓c↓), (3a)

HJ = J
∑
σσ ′

c†
σ S · sσσ ′cσ ′ , (3b)

HB = B · S. (3c)

This model is an extension of the single-site model introduced
in Refs. [24,34], which takes into account the exchange field
h due to proximity to the FMI as well as the external magnetic
field B [38]. Within the single-site model and for a spin- 1

2
impurity, the Hilbert space of the model in Eq. (1) is the
tensor product of the four-dimensional Hilbert space of the
single superconductor site and the two-dimensional Hilbert
space of the impurity spin: H = {(|0〉, | ↑↓〉 ≡ |2〉, |↑〉, |↓〉)
⊗ (| ± 1

2 〉)}, where we have defined |σ = {↑,↓}〉 = c†
σ |0〉 and
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FIG. 2. Evolution of the many-body spectrum of the single-site
model in Eq. (1) as the exchange field (h), exchange coupling (J), and
external magnetic field (B) are switched on sequentially. Their values
are given in units of the strength of the superconducting pairing
potential �. The energies of the even and odd fermion-parity states
are shown in blue and orange color, respectively. The expression for
the odd-parity eigenstate |o〉 is given in Eq. (4). The arrows indicate
the subgap transitions corresponding to the YSR excitations with and
without B. In the rightmost panel, the system is in the strong coupling
regime and the YSR excitations are split by B.

|0〉 is the zero-particle state. The Hamiltonian conserves the
fermion parity, which for the single-site model takes the
form P = ∏

σ (−1)nσ , where nσ = c†
σ cσ . Thus, all eigen-

states can be labeled by their fermion parity and therefore
the Hilbert space splits into the direct sum of the even-
(P = +1) and odd-parity (P = −1) sectors, i.e., H = He ⊕
Ho with He = {(|BCS〉, |BCS〉) ⊗ (| ± 1

2 〉)} and Ho = {(| ↑
〉, | ↓ 〉) ⊗ (| ± 1/2〉)}. Here we have introduced the nota-
tion |BCS〉 = 1

2 (|2〉 + |0〉) and |BCS〉 = 1
2 (|2〉 − |0〉) for the

eigenstates of H0 with eigenvalues −� and �, respectively.
The single quasiparticle excitations of the superconductor are
denoted by |↑〉 and |↓〉 and have a zero eigenvalue of H0 at
h = 0.

Figure 2 shows the evolution of the many-body spectrum of
the system as a function of the exchange field h, the coupling
J , and the external magnetic field B = Bez as obtained from
the exact diagonalization of the Hamiltonian (1) in the single-
site approximation. The leftmost panel shows the spectrum of
the Hamiltonian in Eq. (3a) with h = 0.

We next discuss the effect of different couplings as we add
them sequentially. An exchange field h lifts the degeneracy
of the quasiparticle states giving rise to two twofold odd-
parity degenerate states |↑〉| ± 1

2 〉 and |↓〉| ± 1
2 〉 with energies

±h. As we show below, this splitting in the presence of the
magnetic exchange with the impurity leads to the nonzero
polarization of the YSR excitations. The exchange interaction
HJ entangles the impurity doublet | ± 1

2 〉 with the odd-parity
states of the superconductor, resulting in a further splitting of
the many-body states.

However, in the weak coupling regime, i.e., for small val-
ues of J compared to �, the ground state of the system is in the
even-parity sector, and it is the tensor product of the impurity
spin doublet and the BCS ground state |BCS〉| ± 1/2〉. In

this regime, the system cannot gain much energy by coupling
to the magnetic impurity, and therefore the electrons in the
superconductor remain paired, leaving the impurity spin un-
screened. Thus, the ground state is doubly degenerate, and the
total spin projection of the ground state on ez is Sz

T = ±1/2.
We shall refer to this ground state as a doublet and assume
that the system is in a mixed state with equal probabilities
of the two states of the doublet (this results in zero net po-
larization of the YSR at h = 0, as discussed in the following
section). Applying a finite magnetic field B selects one of the
states of the doublet (or a linear combination thereof) as the
absolute ground state and induces a finite spin polarization,
polarization which persists even at h = 0. However, for weak
magnetic fields, we expect the latter not to be robust to thermal
fluctuations and environmental noise. This robustness can be
achieved with the help of the exchange field h induced in the
superconductor by proximity to an FMI.

At sufficiently large J (strong coupling regime), the ground
state becomes the odd-parity state with Sz

T = 0 resulting from
the entanglement of the impurity doublet and one supercon-
ductor (spin-split) quasiparticle excitation, which is given by

|o〉 = 1√
1 + γ 2

0

(
|↓〉

∣∣∣∣ + 1

2

〉
− γ0|↑〉

∣∣∣∣ − 1

2

〉)
, (4)

where γ0 = (h + √
h2 + J2)/J . Although the full spin

rotation symmetry is broken by the exchange field induced by
the FMI, below we shall often refer to this state as the singlet.

The state |o〉 becomes the ground state at a critical value of
the exchange coupling Jc = 2

3 (
√

4�2 − 3h2 − �), at which
the system undergoes a quantum phase transition (QPT).
Across the QPT, the fermion parity P of the ground state
changes. Since the tunneling of a single electron (or hole)
into the system changes the fermion parity, only excitations
between states of opposite parity are accessible using tunnel-
ing probes. In particular, the YSR excitations are the lowest
lying excitations and correspond to transitions between the
ground states in different parity sectors (they are indicated by
arrows in Fig. 2). In the weak coupling regime (J < Jc), the
YSR excitation is a transition from the doublet ground state
to the singlet state |o〉 given in Eq. (4). On the other hand,
in the strong coupling regime (J > Jc), the YSR excitation
corresponds to a transition from |o〉 to the doublet ground
states in the even-parity sector.

When an external magnetic field B is applied, it lifts the
twofold degeneracy of the ground state in the even-parity
sector. This results in the splitting of the YSR excitations only
in the strong coupling regime. In the weak coupling regime,
such splitting does not take place because, as explained above,
the magnetic field selects one of the states of the even-parity
doublet subspace as the absolute ground state. As we will
discuss in Sec. III, one can regard the splitting of the YSR
excitations as a consequence of the quantum nature of the
impurity spin: Since the tunneling electron (hole) can bring
back the superconductor from the singlet state |o〉 to the |BCS〉
state, the impurity spin is left unscreened and free to precess
in the external magnetic field. Note that a classical spin would
simply align in the direction of the external magnetic field (see
discussion below and Appendix A).
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Although it provides a fully quantum mechanical descrip-
tion of the coupling between the superconductor and the
magnetic impurity, the single-site model described above does
not capture many of the effects of the wide continuum scat-
tering states of the superconductor. Therefore, as far as the
spectral properties of the YSR excitations are concerned, the
results are rather qualitative and the model is unable to provide
information about, e.g., the spatial extent of the excitations.

Alternatively, the Hamiltonian in Eq. (2) can be simpli-
fied by modeling the magnetic impurity as a classical spin.
Note that, in the case of a quantum impurity, the exchange
coupling HJ contains a spin-flip term with nontrivial conse-
quences, especially for impurities with low spin S. However,
in the classical approach, the impurity spin is treated as a
classical vector that aligns with the external magnetic field
(when present), and therefore it can be parametrized as
S = S(cos θ, sin θ ), where θ is the angle subtended by the
magnetic field B and the exchange field h ∝ ez. This results
in a localized spin-dependent scattering potential proportional
to JS(cos θsz + sin θsx ) being added to the Bogoliubov–de
Gennes (BdG) Hamiltonian describing the superconductor.
We refer the reader to Appendix A, where we provide further
details of the classical approach and describe how the subgap
spectrum is obtained.

Notice the complementary character of the two ap-
proaches: Generally, the classical approximation provides a
good description of impurities with a large spin, especially
in the weak coupling regime. However, treating the impurity
spin as a classical vector does not account for any quan-
tum fluctuations that are important in the strong coupling
regime, particularly for the impurity spin 1

2 . The single-site
approximation captures the effect of quantum fluctuations in
a minimal fashion and, in addition, allows us to take into
account the effects of single-ion anisotropy and anisotropy in
the exchange coupling.

In the following section, we will describe the effect of the
exchange and applied magnetic fields on the spectral proper-
ties of the YSR excitations and compare the results obtained
using the two approaches mentioned above. We will demon-
strate that including the effect of the quantum fluctuations is
crucial to correctly describe the spectral properties of the YSR
states.

III. SPECTRAL PROPERTIES OF THE SUBGAP
EXCITATIONS

In order to illustrate the consequences of treating the im-
purity spin quantum mechanically, we compare the spectral
properties of the YSR excitations in the single-site and clas-
sical approaches. Besides the dependence of the excitation
energy on the various system parameters, we are interested
in their spin-polarization properties, which can be accessed
experimentally using a spin-polarized tunneling probe [39].
As explained below, the spin polarization of the YSR exci-
tations is defined as the difference of the spectral weight of
the spin-up and spin-down YSR peaks of the spectral function
measured using a tunneling probe (see Fig. 1). We normalize
the polarization to the maximum of the sum of spectral
weights for the two spin orientations of each YSR excitation.

Let us briefly recall how the polarization can be measured
using a tunneling probe. In the tunneling regime, the full
Hamiltonian describing the tunneling of electrons (or holes)
from a tunneling probe contains three terms:

Htot = H + Ht + Hts, (5)

where H is the system Hamiltonian, which we describe us-
ing the single-site model from Eq. (3); the Hamiltonian for
the (spin-polarized) tunneling probe is denoted Ht , which is
expressed in terms of the creation (annihilation) operators
of the electrons in the probe, i.e., d†

σ (dσ ); and the tunneling
Hamiltonian is denoted Hts. For a quantum impurity in the
Kondo regime, Hts reads (see, e.g., Ref. [40])

Hts = T0

∑
σ

c†
σ dσ + T1

∑
σ,σ ′

c†
σ S · σσσ ′dσ ′ , (6)

where T0 is the direct tunneling amplitude into the supercon-
ductor and T1 is the tunneling amplitude through the magnetic
impurity. Notice that the system operators appearing in T0

(e.g., c†
↑, for σ =↑) and T1 (e.g., c†

↓S+ + c†
↑Sz, for σ =↑)

when acting upon a given state invert its fermion parity and
change Sz

T by ± 1
2 . Thus, for zero external magnetic field B,

the contributions to the normal current in the weak tunneling
regime [41] are of the order |T0|2 and |T1|2. Furthermore, when
the magnetic field B is not aligned with the exchange field
h ∝ ez, Sz

T is not a good quantum number and there is also
an interference term proportional to |T ∗

0 T1| ∼ B. However, for
the small magnetic fields considered here, we shall neglect
this correction. In addition, since the single-site model only
provides a qualitative description of the spectral amplitudes,
below we focus on the |T0|2 contribution to the tunneling
current only. Indeed, since the involved operators obey the
same selection rules, the |T1|2 contribution results from tran-
sitions between the same many-body states and simply yields
an additional (positive) contribution to the current. Focusing
on the |T0|2 contribution and using the standard tunneling
formalism [41], the spin-polarized tunneling current is deter-
mined by the spin-resolved spectral function Aσ (ω), which is
obtained from the imaginary part of the local Green’s function
(GF), Aσ (ω) = −Im[GR

σ (ω)]/π , where GR
σ (ω) is the Fourier

transform of

GR
σ (t ) = −iθ (t )〈{cσ (t ), c†

σ (0)}〉. (7)

Hence, for ω > 0, the spectral function takes the form [42]

Aσ (ω) =
∑

n

|〈ψn|c†
σ |ψ0〉|2δ(ω − εn + ε0). (8)

Below, we focus on the YSR excitations which correspond
to transitions from the ground state of the system, |ψ0〉, to the
lowest lying excited state |ψ1〉 (or states for B �= 0 and J > Jc;
see below). The spectral weight of the YSR excitations is thus
given by

Zσ = |〈ψ1|c†
σ |ψ0〉|2. (9)

Hence, we define a (normalized) polarization spectral function
for the YSR excitations as follows:

P(ω) =
(

Z↑ − Z↓
Z↑ + Z↓

)
δ(ω − ε1 + ε0), (10)
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(a) (b) (c)

FIG. 3. Spin polarization of the YSR excitations as a function of the energy E and the exchange coupling J in the single-site model. In
the absence of the magnetic field, the system shows no splitting of the YSR excitations (a), while adding the magnetic field gives rise to the
splitting of the YSR excitations in the strong coupling regime (b, c). The dashed line indicates the QPT. All the energies are given in units
of �. The values of the parameters used to generate the plots are B = 0.1 and h = 0.3. Notice that the value of the B field considered here is
exaggerated in order to make the splitting visible on the scale of the plot.

where the maximum in the normalization corresponds to the
sum of the spectral weights with spin-up and spin-down YSR
excitations. For B �= 0, the above expressions must be general-
ized to include all the relevant low lying states involved in the
YSR excitation (see Fig. 2). Further details of the calculations
in the single-site approach are relegated to Appendix B. For
the classical approach, the polarization of the YSR excitations
is obtained by extending the scattering solution of Yu, Shiba,
and Rusinov [1–3] to take into account the exchange field
h, with the details of these calculations being provided in
Appendix A. Below, we will compare the above polarization
spectral function to the results of the normalized polarization
obtained from the classical approach.

However, before fully discussing the results of those calcu-
lations, let us clarify a subtle issue regarding the calculation
of the polarization of the YSR excitations in the single-site
approach. Let us recall that, in the weak coupling regime
at zero magnetic field, the ground state of the system is the
doublet |e±〉 = |BCS〉| ± 1

2 〉 . An unbiased preparation of the
system will result in the ground state being either |e+〉 or |e−〉
with equal probability, which is described by the following
mixed state:

ρe = 1
2 (|e+〉〈e+| + |e−〉〈e−|). (11)

In this expression, the prefactor pi={±} = 1
2 refers to the classi-

cal probability for the system to be found in one of the states of
the doublet. Therefore, the expression for the spectral function
needs to be modified in order to take into account that the
ground state is a mixed state, which results in the following
expression:

Aσ (ω) =
∑

i={±}
pi

∑
n

|〈ψn|c†
σ |ei〉|2δ(ω − εn + ε0). (12)

Note that, in the absence of the exchange and external mag-
netic fields (i.e., h = B = 0), a tunneling electron (hole) will
induce a transition to a state that has a nonzero overlap with
the lowest-energy odd-parity state:

|o〉 = 1√
2

(
|↓〉

∣∣∣∣ + 1

2

〉
− |↑〉

∣∣∣∣ − 1

2

〉)
. (13)

This yields equal spectral weight of the YSR excitation for
the two spin orientations, i.e., Z↑ = Z↓ = 1

16 , hence resulting
in zero spin polarization. Zero polarization is also obtained
when the calculation is carried out in the strong coupling
regime, in which the ground state is a pure state correspond-
ing to the odd-parity singlet |o〉 from Eq. (13). On the other
hand, in the classical approach in the absence of h and B, the
classical vector describing the spin of the magnetic impurity
is conventionally chosen along a certain direction (the spin
quantization axis). Thus, the solutions of the BdG equations,
including the YSR in-gap levels, have the spin projection on
the spin quantization axis as a good quantum number. This has
led to the perception that the YSR excitations are indeed spin
polarized in both weak and strong coupling regimes. Below,
when considering the classical approach, we shall follow the
same convention.

Next, we discuss the polarization function P(ω) of the YSR
excitations as a function of the exchange coupling and the
applied magnetic field in the single-site model and compare
the results to the classical approach. As anticipated above, we
will show that the presence of either the exchange or magnetic
field is required for the YSR excitations to have nonzero polar-
ization. In the absence of a magnetic field, the polarization of
the states is protected by the exchange field h, which can be of
the order of a few Tesla, thus, making the polarization robust
against thermal fluctuations and environmental noise. Figure 3
shows the polarization spectral function P(ω) of the YSR
excitations as a function of the exchange coupling J for the
finite value of the exchange field: In the absence of an external
magnetic field, the single-site model predicts the existence of
a pair of spin-polarized YSR excitations both in the weak and
in the strong coupling limit [see Fig. 3(a)]. The polarization
spectrum in the classical model shows a somewhat similar
behavior: two spin-polarized YSR excitations crossing at the
critical value of the exchange coupling [see Fig. 4(a)]. How-
ever, closer examination reveals a crucial difference between
the two approaches: While in the classical limit, the YSR
excitations are fully polarized for any value of J (see Fig. 4), in
the quantum approach, the polarization of the YSR excitations
at ω > 0 depends on the exchange field h and coupling J as
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(a) (b)

FIG. 4. Polarization of the YSR excitations from the classical
approach as a function of the dimensionless coupling parameter α �
JS for two different impurity-spin S orientations: parallel (a) and
perpendicular (b) to the exchange field h. In order to highlight the
polarization of the YSR excitations here we plot A↑(ω) − A↓(ω)
normalized by the maximum value of the total density of states, that
eliminates contribution from the continuum of states. The dashed
line indicates the phase transition. The energies are in units of the
superconducting pairing potential �. In the two panels, we have set
h = 0.3.

follows:

Z↑ − Z↓
Z↑ + Z↓

∝ γ 2
0 − 1

γ 2
0 + 1

= h√
h2 + J2

. (14)

Thus, at a finite value of h, the YSR excitations are polarized
even for B = 0. Applying an external magnetic field alters the
polarization of the YSR excitations. In the presence of the
magnetic field, one of the ground states in the weak coupling
regime (or a linear combination of them) is selected and the
system is no longer described by a mixed state, which further
enhances the polarization.

Regarding the effects of the external magnetic field, we
first consider the case when B||h in Fig. 3(b). In the weak
coupling regime, the system exhibits a pair of fully polarized
YSR excitations and a similar result is obtained using the
classical approach. However, in the strong coupling regime
applying the magnetic field splits the YSR excitations into
two pairs of the subgap excitations: the main YSR state and its
“satellite” with lower polarization [see Fig. 3(b) for J > Jc].
For B||h the polarization of the satellite state behaves as
P(ω) ∝ −γ 2, where γ = [B + 2h +

√
(B + 2h)2 + 4J2]/2J ,

and it has the opposite sign compared to the main YSR state
spin orientation. For the details of the polarization calculations
see Appendix B.

Changing the orientation of the external magnetic field
allows us to control the polarization of the pair of subgap
excitations as shown in Fig. 3(c): By applying the magnetic
field perpendicularly to the direction of the exchange field re-
verses the spin polarization of the satellite peaks, such that two
states have the same polarization orientation. For B ⊥ h the
polarization of both the main YSR peaks and their satellites
decreases with increasing exchange coupling J .

To summarize, an external magnetic field can be used as a
knob for tuning the spin polarization of the YSR excitations.
Figure 5 shows the polarization of the YSR excitations as a
function of the angle subtended by the applied magnetic and
exchange fields θ ∈ (0, π ). In the single-site approach, the be-
havior of polarization depends on the strength of the exchange
coupling: in the weak coupling regime, the spin polarization

(a) (b)

(c) (d)

FIG. 5. Polarization spectral density as a function of the energy
E and the angle of the external magnetic field B = B(cos θ, sin θ ) in
the weak and strong coupling regime for the single-site (a, b) and
classical (c, d) approaches. Energies are given in units of �. The
choice of system parameters is B = 0.1, h = 0.3.

of the YSR excitations switches with θ , while in the strong
coupling regime, due to the splitting of the YSR excitations
in the magnetic field, the response is qualitatively different:
The switching happens between the main YSR state and its
satellite. Additionally, the switching of polarization occurs at
different values of θ for the YSR state and its satellite. Thus,
there is a range of θ around π/2 for which there is a pair states
with the same finite spin polarization. On the other hand, as
mentioned above, in the classical case, there is no qualitative
difference in the polarization behavior between the strong and
weak coupling regimes.

IV. CONCLUSIONS

We have studied a system consisting of a ferromagnetic
insulator/superconductor structure coupled to a quantum dot
in the Kondo regime. We demonstrate that the spin splitting
induced in the superconductor via the magnetic proximity
effect leads to spin polarization of the YSR excitations even
in the absence of an external magnetic field.

To capture the quantum nature of the quantum dot spin
in a qualitative fashion, we employed a single-site model de-
scribing a quantum impurity coupled to a spin-split single-site
superconductor. This model, despite its simplicity, correctly
captures the many-body nature of the system’s ground state,
in particular, the QPT occurring as a function of the ex-
change coupling, accompanied by the change in the fermion
parity and the total spin of the ground state. Both the weak
and the strong coupling phases are characterized by the
low-energy spin-polarized YSR excitations. The exchange
coupling strength can be adjusted in tunneling experiments
through manipulation of the distance between the sample and
the tip [43], or in quantum-dot experiments by applying a gate
voltage to the quantum dot [14]. This allows for exploration
of the range from weak to strong exchange coupling regimes.
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We find that the single-site model predicts the splitting
of the YSR excitations in the strong coupling regime, while
the classical impurity limit does not describe this splitting.
Changing the orientation of the magnetic field allows control-
ling the polarization of the YSR excitations, namely, rotation
of the magnetic field allows us to switch the polarization of
the excitations.

To go beyond the qualitative picture provided by the single-
site model, one has to perform the NRG calculations similar
to Ref. [27]. The NRG method can give a quantitative de-
scription of the quantum phase transition, of the splitting of
the YSR states in the magnetic field. However, for the system
studied here we do not expect the NRG spectra to differ qual-
itatively from the ones obtained using the single-site model.

For applications in spintronics and transport in quan-
tum devices, the main advantage of using an FMI is that
the polarization of the YSR excitations occurs without the
need of applying a large external magnetic field which
would inevitably affect superconductivity. The results of our
paper can have implications for the physics of transmon
devices that have been recently realized in a semiconducting-
superconducting nanowires coupled to a quantum dot [15,16].
Our results can be straightforwardly extended to other setups,
as for example molecules on the surface of superconductors
with larger spin number, magnetic anisotropy, as well as
anisotropic exchange coupling [24,35].

Note added. Recently, we become aware that a spin
splitting in the even parity sector in the absence of an ex-
ternal magnetic field can be induced when going beyond
the single-site model. This effect enhances the robustness of
the polarization of the YSR. A detailed calculation will be
reported in a separate publication.
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APPENDIX A: CLASSICAL APPROACH

Following Yu’s, Shiba’s, and Rusinov’s [1–3] original
works, the problem of a classical impurity on a superconduc-
tor can be analytically solved by accounting for the exchange
field in the bare superconductor GF. To this end, notice that
the BdG Hamiltonian describing a spin-split superconductor
written in the Nambu basis, i.e., �k = (ck↑ ck↓ c†

−k↓ − c†
−k↑)T,

takes the form

H =
∑

k

�
†
k HBdG

k �k,

HBdG
k = εkτ3 + �τ1 + hσ3τ0, (A1)

where τi=1,2,3 and σi=1,2,3 are the Pauli matrices correspond-
ing to the particle-hole and the spin degrees of freedom,
respectively. Hence, the unperturbed GF of a spin-split super-
conductor reads

Ĝ−1
0 (ω, k) = iωσ0τ0 − HBdG

k ,

Ĝ0(ω, k) = (h − ω)τ0 − ξkτ3 − �τ1

�2 + ξk − (h − ω)2
. (A2)

Performing summation over the momenta, we obtain the local
GF:

Ĝ0(ω) = −πν
(h − ω)τ0 − �τ1√

�2 − (ω − h)2
, (A3)

where ν is the electron density of states at the Fermi level. The
exchange coupling in the limit of classical impurity is given
by a scattering potential V̂ = J

2 S · σ, where J is an exchange
coupling between the impurity spin S and the spin density of
a superconductor. Note that in the classical limit S is a vector.

We compute the T matrix, whose poles are the energies of
the subgap bound states. The T matrix can be defined using
the following equation for the perturbed local GF matrix:

Ĝ(ω) = Ĝ0(ω) + Ĝ0(ω)T̂ (ω)Ĝ0(ω). (A4)

Upon comparing this equation with the Dyson equation, we
arrive at T̂ (ω) = V̂ [1 − Ĝ0(ω)V̂ ]−1. Hence, for an impurity
aligned with the external magnetic field, we obtain

Ĝ(ω) = −πν

D

(
a �

� a

)
, (A5)

with D = 2α(h − ω) + (α2 − 1)
√

�2 − (h − ω)2 and a = h
− ω − α

√
�2 − (h − ω)2, where we have introduced the di-

mensionless parameter α = πνJS/2. The local retarded GF
GR(ω) is obtained by replacing ω → ω + iδ in the above ex-
pression, where δ → 0+. The spin-resolved spectral function
is obtained from normal components of the GF matrix using

Acl
σ={↑,↓}(ω) = − 1

π
Im

[
GR

σσ (ω)
]
. (A6)

For h > 0 Acl
↑ (ω) has the YSR peak at ω↑ = h − � (1−α2 )

(1+α2 ) ,

while Acl
↓ (ω) has a peak at ω↓ = −h + � (1−α2 )

(1+α2 ) . Notice that
when the external magnetic and exchange fields are aligned
this approach yields two fully spin-polarized YSR excita-
tions. Thus, the exchange field merely introduces a shift of
the the YSR peak energy. A closed analytical expression of
the energy of the YSR peaks can also be obtained for B
perpendicular to the exchange field h, but not in the general
case. However, by obtaining the spin polarization numerically
we observe that the main difference between the aligned and
nonaligned cases is the change in the spin polarization of the
YSR excitations, which changes from being fully polarized to
partially polarized as the angle θ between the magnetic and
exchange field increases.

APPENDIX B: SPIN POLARIZATION OF THE YSR
EXCITATIONS IN THE SINGLE-SITE MODEL

In this Appendix, we calculate spin polarization of the
YSR excitations in the single-site approximation. Assuming
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(b)(a)

FIG. 6. Schematic representation of the low-energy spectrum of
the single-site model as a function of exchange coupling J for the
case of zero (a) and nonzero (b) magnetic field B. Arrows indicate
possible transitions in the weak coupling (J < Jc) and in the strong
coupling (J < Jc) regimes.

nonzero exchange field we obtain the polarization of the YSR
excitations analytically for the cases of B = 0 and B||h. The
results are shown in Figs. 3(a) and 3(b).

When h �= 0 and B = 0 the polarization P(ω) is computed
using the expression given in Eq. (10) of the main text. The
low-energy spectrum for this choice of parameters is shown
in Fig. 6(a). In the weak coupling regime (J < Jc) the ground
state at ε0 = −� is twofold degenerate and is described by
the density matrix ρe in Eq. (11). The first excited state with

the energy ε1 = − (h+√
h2+J2 )
J is given by

|o〉 = 1√
1 + γ 2

0

(| ↓, 1/2〉 − γ0| ↑,−1/2〉), (B1)

where γ0 = h+√
h2+J2

J . The amplitudes of the spectral function
are

Z↑ = |〈o|c†
↑|ρe〉|2 = γ 2

0

8
(
1 + γ 2

0

) ,

Z↓ = |〈o|c†
↓|ρe〉|2 = 1

8
(
1 + γ 2

0

) . (B2)

In this case, there is a single spin-polarized YSR excitation at
ω = ε1 − ε0 and its polarization is given by

P(ω) =
(

γ 2
0 − 1

1 + γ 2
0

)
δ(ω − ε1 + ε0), (B3)

with the amplitude decreasing as a function of the exchange

coupling as γ 2
0 −1

1+γ 2
0

∝ h√
h2+J2 for a fixed value of the exchange

field. When h �= 0 and B||h low-energy states involved in the
YSR excitations are shown in Fig. 6(b). Let us discuss the
weak and strong coupling regimes separately. For J < Jc the

magnetic field selects (with probability p− = 1) one of the
doublet parity-even states |e−〉 as the absolute ground state.
The first excited parity-odd state |o〉 is as in Eq. (B1) but with

γ = (B+2h+
√

(B+2h)2+4J2 )
2J . Hence, the spectral weights for spin

excitations are the following:

Z↑ = |〈o|c†
↑|e−〉|2 = γ 2

2(1 + γ 2)
,

Z↓ = |〈o|c†
↓|e−〉|2 = 0. (B4)

Therefore, in the weak coupling regime, there is a sin-
gle YSR peak with constant polarization intensity P(ω) ∝
(Z↑ − Z↓)/(Z↑ + Z↓) = 1. The strong coupling regime re-
quires more care. For J > Jc the ground state is given by the
odd-parity singlet |o〉 and there are two even-parity states |e±〉
the electron can tunnel to. The polarization in this case has
two contributions:

P(ω) =
∑

i={±}(Z
i
↑ − Zi

↓)δ(ω − εi + ε0)

max[Z+
↑ + Z+

↓ , Z−
↑ + Z−

↓ ]
, (B5)

where εi={±} = −� ± B
2 . The spectral weights are

Z−
↑ = |〈e−|c†

↑|o〉|2 = 0,

Z−
↓ = |〈e−|c†

↓|o〉|2 = γ 2

2(1 + γ 2)
,

Z+
↑ = |〈e+|c†

↑|o〉|2 = 1

2(1 + γ 2)
,

Z+
↓ = |〈e+|c†

↓|o〉|2 = 0. (B6)

The polarization is given by the sum P(ω) = P+(ω) + P−(ω)
with

P+(ω) = Z+
↑

Z+
↑

δ(ω − ε+ + ε0),

P−(ω) = −Z−
↓

Z+
↑

δ(ω − ε− + ε0), (B7)

where we normalize each term by Z+
↑ , because Z+

↑ > Z−
↓

for J > Jc. Two components P±(ω) correspond to the main
YSR excitation and its satellite, respectively. These two
states show different behavior as a function of the exchange
coupling J: the polarization intensity of the satellite state
P− ∝ −γ 2 with γ = B+2h√

(B+2h)2+4J2
increases as a function of

J , while the polarization of the main YSR excitation P+(ω)
stays constant as a function of J and has an opposite spin
orientation.
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