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Laburpena 

 

 

Natura beti izan da inspirazio iturri izakiarentzat eta, batez ere, material 

zientzialarientzat. Milioika urtetan zehar, naturak estrategia ezberdinak garatu ditu 

biomaterialak behar espezifikoetara moldatzeko. Estrategia horien artean, frakzio 

inorganikoak matrize organikoetan tartekatzeak funtsezko rola betetzen du 

biomaterial askoren jarduera onean. Material hibrido organiko-inorganiko hauek, 

zientzialarien arreta bereganatu dute azken urtetan. Material hibridoek ezaugarri 

bereziak dituzte, material organikoen (polimeroak) eta inorganikoen (metalak eta 

zeramikoak) arteko tartea betez. Material hibridoak sintetizatzeko erabiltzen diren 

estrategia gehienak fase likidoan ematen dira. Estrategia horiek desabantaila ugari 

dituzte, disolbatzaile hondarrak kentzeko sintesi osteko prozesuen beharra adibidez. 

Fase gaseosoan gertatzen diren estrategiak, material hibridoen sintesirako aukera 

egokia direla frogatu dute. Vapour Phase Infiltration (VPI), Atomic Layer Deposition 

(ALD) teknikaren eraldaketa dena, modu arrakastatsuan erabili da oxido metalikoak 

matrize polimerikoetan infiltratzeko, horrela material hibridoak sortuz. Ikuspegi 

honen helburu nagusia materialen propietate mekanikoak hobetzea zen. Hala ere, 

polimeroak oxido metalikoekin hibridatzea beste hainbat propietate eraldatzeko gai 

dela frogatu da beranduago aurkeztutako lanetan. 
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a) Atomic Layer Deposition (ALD) eta b) Vapor Phase Infiltration (VPI) tekniken 

harteko presio profilaren ezberdintasuna. VPI-an, prekursoreen pultsoaren eta 

erreaktorearen purgaren artean gehitzen den exposizio denborari esker, substratuak 

estaltzeaz gain infiltratu ere egiten dira.  

 

Erresistentzia handiko polimeroak, Kevlar-a adibidez, hautagai ezin-hobeak 

dira fase gaseosoan oxido metalikoekin hibridatzeko. Polimero hauen egitura 

kristalino ordenatuak, aurkezten dituzten propietate berezien iturria izan arren, 

sintesi ondoko funtzionalizazioa asko zailtzen du. Hala ere, erresistentzia altuko 

polimero gehienak argi ultra-bioleta eta tenperatura altuekiko oso sentikorrak dira 

eta degradazioa ekiditeko babestu egin behar dira. Orain arte erabilitako estrategiak 

(polimeroak oxido metaliko edo erresina batekin estalduz) polimeroaren ahultzea 

bezalako desabantailak dakartza. 

Tesi honen lehen zatian Kevlar zuntzen hibridazioa ZnO-rekin, VPI erabiliz, 

aurkezten da. Infiltrazio prozesua 200 ziklo errepikatuz eta 150 ºC-tan egiten da, 

dietilzink eta ura prekurtsore moduan erabilita. Hibridazio prozesuaren ondorioz, 

Kevlar-ZnO material hibrido bat sortzen da zuntzen gainazaletik gertu. Material 

hibridoaren egitura, ZnO klusterrak kobalenteki lotutako Kevlar kateen artean, 

teorikoki aurresan eta esperimentalki karakterizatzen da. Jatorrizko hidrogeno 
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zubiak N-Zn-O lotura kobalenteekin ordezkatzean zuntz infiltratuek degradazio 

tenperaturan 8 ºC-ko igoera erakusten dute. Gainera, zuntzen propietate 

mekanikoak eta UV sentikortasuna ere neurtzen dira. Zuntz infiltratuek Kevlar-aren 

propietate mekanikoen %90-a mantentzen dute. Tratatu gabeko Kevlar zuntzak UV 

argipean jarri ondoren propietate mekanikoen %50-a galtzen dute. ZnO-az estalitako 

zuntzak, konparatzeko prestatutakoak, argi ultra-bioletarekiko sentikortasun 

handiagoa erakusten dute, ZnO filmaren propietate foto-katalitikoen ondorioz. Hala 

ere, ZnO infiltratutako zuntzek ez dute inolako degradaziorik erakusten UV 

argiarekin erradiatu ondoren. Beraz, Kevlar zuntzak ZnO-az hibridatzearen 

ondorioz, polimeroaren egonkortasuna handitu dela frogatzen da. 

 
Kevlar zuntz polimerikoak VPI erabiliz zink oxidoaz infiltratzean, beraien propietate 

termikoak hobetu eta argi ultrabioletarekiko erresistentzia handitzen da. 

 

Tesi honen bigarren zatian ALD/VPI prozesu konbinatu berri bat aurkezten 

da, aurreko atalean lortutako emaitzak hobetzeko. ALD/VPI prozesu konbinatu 

honekin, substratu polimeriko bat oxido metaliko batekin estali daiteke beste oxido 

metaliko ezberdin batekin infiltratzen den prozesu berean. Kasu honetan, Kevlar 

zuntzak Al2O3-rekin estali eta ZnO-az infiltratu dira. Zuntzak Al2O3-rekin estaltzean 

propietate mekanikoak %10-ean hobetzen dira eta ZnO infiltratzean UV argiarekiko 
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sentikortasuna ezabatzen da. Beraz, UV argia jasaten duten eta propietate mekaniko 

hobeak dituzten Kevlar zuntzak sortu dira. 

 
Kevlar zuntzak zink oxidoaz infiltratuz gain aluminio oxidoaz estaltzean, argi 

ultrabioletarekiko erresistentzia handitzeaz gain zuntzen irmotasuna %17an 

hobetzen da 

 

Tesi honen azken zatian ZnO infiltrazioak Kevlar-aren propietate 

elektronikoetan duen eragina aztertu da. ZnOa infiltratu ondoren, DFT kalkulu 

teorikoek Kevlar-aren eraztun bentzenikoak eraztun kinoide bihurtuko direla 

aurresan dute, energia tarte elektronikoa txikituz. Eraztun aromatikoen konbertsioa 

nano-FTIR teknikaz aztertzen da eta energia tartearen txikitzea UV-Vis 

espektroskopiaz. Tarte elektronikoaren txikitzeak konduktibitate elektrikoaren 

handitzea dakar, zuntzak tolestu eta estalduraren kontribuzioa ezabatu ondoren 

mantentzen dena. Zuntz hibridoen konduktibitatea infiltrazio ziklo kopuruaren eta 

esposizio denboraren arabera kontrolatu daiteke. Gainera, zuntzak argi ikusgaiaz 

argiztatzean foto korrontearen sorrera ere aztertzen da. Bukatzeko, ZnO-az 

infiltratutako Kevlar zuntzek propietate foto-katalitikoak aurkezten dituzte argi 

ikusgaiaz argiztatzean, tarte elektronikoaren txikitzea konfirmatuz. Aktibitate foto-
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katalitikoa, infiltrazio ziklo kopuruarekin aldatzen dena, Rodamina B molekularen 

degradazioa jarraituz aztertzen da.  

 

 
a) Zink oxidoaz infiltratutako Kevlar zuntzen erresistentzia elektrikoaren 

dependentzia infiltrazio ziko koupuraren arabera b) Zuntz hibridoen e 

rresistentzi elektrikoaren dependentzia exposizio denboraren arabera 
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Abstract 

 

Nature has always been a great source of inspiration for the human being in 

general and for material scientists in particular. Over millions of years of evolution, 

nature has developed different strategies to adapt the properties of biomaterials to 

different specific needs. Among these strategies, the intercalation of inorganic 

fractions into organic matrices plays a critical role in the performance of many 

biomaterials. These hybrid organic-inorganic materials have attracted researchers 

interest over the past years. Hybrid materials present unique properties, bridging 

the gap between the organic materials (such as polymers) and inorganics (metals 

and ceramics). Most of the existing approaches for the synthesis of hybrid materials 

are carried out in liquid phase, which has some drawbacks such as the need of post 

processing treatments for the elimination of the residual solvent. The vapour phase 

approaches have demonstrated to be an efficient and reliable alternative for the 

synthesis of hybrid materials. Vapour Phase Infiltration (VPI), a modification of 

Atomic Layer Deposition (ALD), has been successfully used for the infiltration of 

metal oxides into polymeric matrices, thus creating hybrid materials. The initial 

target of this approach was the improvement of the mechanical properties. 

However, it has later been demonstrated that the hybridization of polymers with 

metal oxides leads to the modification of many other properties.  

Among others, high strength polymers, such as Kevlar, are great candidates 

for the vapour phase hybridization with a metal oxide. These polymers have a 

highly ordered crystalline structure, which is responsible for their outstanding 

properties. This makes their post synthetic functionalization difficult. However, high 

strength polymers are extremely sensitive to UV and high temperatures, so they 

need to be protected. Coating the polymeric fibres with a resin or a metal oxide, 

which is the so far used strategy, shows several drawbacks such as induced 

brittleness of the polymer and possible detachment of the coating.  

In the first part of this thesis, the hybridization of Kevlar fibres with ZnO 

through VPI is studied and compared to ZnO ALD coated fibres. The VPI process is 



Abstract 
 

VIII 

 carried out with 200 deposition cycles at 150 ºC, using diethylzinc and 

water as precursors. As a consequence of the hybridization, a hybrid Kevlar-ZnO 

material is created in the subsurface area of the fibres. The structure of this hybrid 

material is theoretically and experimentally characterized, consisting of ZnO clusters 

grown among covalently cross-linked Kevlar chains. Thanks to the substitution of 

the original hydrogen bonds by N-Zn-O bonds, the infiltrated fibres show an 

increase of 8 ºC in their degradation temperature. Besides, the mechanical properties 

of the fibres are tested together with their stability against UV irradiation. The 

infiltrated fibres maintain 90% of the modulus of toughness of untreated Kevlar. 

When exposed to UV light, the untreated Kevlar fibres lose more than 50% of their 

toughness. The ZnO coated fibres, prepared for comparison, suffer an enhanced 

photodegradation when exposed to UV light as a consequence of the photocatalytic 

activity of the ZnO film deposited on the surface of the polymer. However, the ZnO 

infiltrated fibres do not show any degradation of their mechanical properties after 

being irradiated with UV light. Therefore, it is demonstrated that thanks to the 

hybridization of Kevlar fibres with ZnO through VPI the thermal and UV stability of 

the polymer is enhanced.  

In the second part of this thesis a new ALD/VPI combined process is used for 

the optimization of the results presented in the previous part. With this combined 

ALD/VPI process a polymeric substrate can be coated with a metal oxide and 

infiltrated with a different metal oxide within a single process. In this case, Kevlar 

fibres coated with Al2O3 and infiltrated with ZnO are prepared and studied. The 

Al2O3 coating resulted in the enhancement of the modulus of toughness by 10%, 

while the ZnO-Kevlar hybrid created in the subsurface area supressed the UV 

sensitivity of the fibres. Thus, Kevlar fibres with an enhanced modulus of toughness 

and UV radiation resistance are created.   

 

In the last part of this thesis, the effect of the ZnO infiltration on the electronic 

properties of Kevlar is analysed. Theoretical DFT calculations predict a conversion of 

the benzenoid rings of Kevlar to quinoid rings resulting in a shift of the energy band 

gap towards lower energies. The change in the ring structures is experimentally 

proven by nano-FTIR and the band gap shift by UV-Vis spectroscopy. The shift in 
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the band gap results in enhanced electrical conductivity of the ZnO infiltrated fibres, 

which is maintained even after bending the fibres and removal of the contribution 

from the coating to the conductivity. The conductivity of the hybrid fibres can be 

tuned by changing the exposure time or the number of infiltration cycles. However, 

in both cases a threshold value has to be overcome to observe a significant 

improvement. Moreover, the generation of photocurrent when illuminating the 

hybrid fibres with visible light is also studied. Finally, the ZnO infiltrated Kevlar 

fibres show also photocatalytic activity when illuminated with visible light, further 

confirming the shift of the electronic band gap with the creation of the hybrid 

material. The photocatalytic activity, which is tuneable with the number of 

infiltration cycles, is studied by following the degradation of Rhodamine B.
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“I was working with these very long-chain, where you had a lot of benzene rings in 

them. It was very strong and very stiff, unlike anything we had made before. I knew 

that I had made a discovery. I didn’t shout “Eureka!” but I was very excited, as was 

the whole laboratory excited, because we were looking for something new. 

Something different. And this was it.”  

Stephanie Kwolek 

 

 

 

“Basically, I have been compelled by curiosity.”  

Mary Leakey 
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Chapter 1 

Introduction 

 

1.1.- Background 

Nature has always been a source of inspiration for materials scientists. Driven 

by the need of living organisms to adapt to various and changing environments, 

biomaterials have been incrementally optimized over millions of years of evolution. 

As a consequence of the tremendous amount of existing organisms, combined with 

the very specific needs of each of them, many different optimization strategies can 

be found in nature. These approaches vary from the adaptation of structural features 

(hierarchically ordered nanostructures1, self-assembled structures2, etc.) to the 

modification of compositional features. Among the modification of compositional 

features, there is a route which has specially attracted the attention of materials 

researchers, the creation of hybrid organic-inorganic materials.  

A hybrid organic-inorganic material is defined as a material that includes an 

organic and an inorganic moiety blended on the molecular scale3. Commonly, a 

distinction of hybrid materials in Class I and Class II is made, based on the kind of 

interaction between the two moieties. Class I hybrid materials are those composed of 

components with rather weak interactions, including Van-der-Waals, hydrogen 

bonds or weak electrostatic interactions. In contrast, the components of Class II 

hybrid materials show strong chemical interactions, such as, covalent, coordination 

or ionic bonds. 

Many natural materials are composed of a soft organic matrix (proteins, 

polysaccharides, etc.) and hard inorganic moieties (metals, minerals, etc.). Thanks to 

such combination, hybrid materials combine the elasticity and lightness of the 

organic matrix with the stability and toughness of the inorganic moieties. Bones are 

one of the most characteristic examples of hybrid natural materials. Composed by a 
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collagen matrix intermixed with hydroxyapatite nanocrystals, bones are tough, 

giving bodies a structure, but they are elastic enough to compensate the stress that 

acts on the body upon movements. The proportion of the components varies 

depending on the type of bone and so do the properties. As a further example, 

mollusc shells consist of a strong and resilient hybrid organic-inorganic material, 

nacre. In nacre, hexagonal inorganic CaCO3 platelets are glued together by a mixture 

of chitin and proteins. Its unique composition and architecture makes nacre as tough 

as an inorganic material, simultaneously exhibiting an extraordinarily high bending 

strength for sculpting and protecting the molluscs.  

However, apart from the mentioned combination of properties, hybrid 

materials can also present some new or improved functionalities as a consequence of 

the physical or chemical interactions between the components. For example, 

Broomell et al. discovered that the toughness of the Nereis sea worm jaw arises from 

a metal-protein coordination in the hybrid material4,5. They observed that the 

toughest areas of the jaw were characterized by a high concentration of Zn2+ cations. 

These metal ions coordinate to the protein matrix, stiffening the tips of the jaw. Later 

on, similar metal-protein hybrid materials were observed in the toughest parts of 

some other insects, such as dry wood termites´ mandibles6 and spider fangs7. As a 

consequence of those investigated examples, it was initially assumed that the 

incorporation of inorganic moieties into organic matrices is a bioadaptation strategy 

exclusively for mechanically demanding environments. However, it was soon 

discovered that hybrid materials also play a key role in other critical properties of 

biomaterials, such as adhesion8,9 or self-healing10.  

In a conscious or non-conscious way, humans frequently mimic nature to 

fulfil their needs. Hybrid organic-inorganic materials are not an exception and the 

creation of synthetic hybrid materials goes even back to cave paintings. According to 

present knowledge, cavemen mixed some organic fluids, such as blood or grease, 

with inorganic pigments for drawing cave walls.  However, other ancient paintings 

led to the discovery of which is considered the first synthetic hybrid material: Maya 

Blue. The Maya used to represent dairy or special events in bright colour paintings. 

For the surprise of the archaeologists, some Mayan paintings discovered in Yucatan 

maintained the bright and shining blue colour over centuries (Figure 1.1a). The 
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impressive temporal stability of the later called Maya Blue arises from its hybrid 

structure: organic indigo pigments intercalated into inorganic palygorskite clay 

channels11. Similarly, in the medieval age different metal salts were mixed with 

organic fatty acids to obtain fluid and stable bright colour paints. It has been later 

demonstrated that the creation of a hybrid material consisting of a metal coordinated 

network of diacids is responsible for the good preservation of the paints over 

centuries12,13. In all those early times examples, the fortuitous creation of a hybrid 

material led to improved properties. However, this natural adaptation strategy was 

not intentionally mimicked until the twentieth century. The first reported intentional 

synthesis of a hybrid organic-inorganic material dates from 1996, when Belfiore et 

al.14,15 mixed two organic polymers (1,2-polybutadiene and 3,4-polyisoprene) with 

Pd salts in solution. The resulting polymer-Pd hybrid presented extremely different 

physicochemical properties compared to those of the pristine polymers. The Young´s 

Modulus of the hybrid increased 50 times and the solubility was significantly 

altered. The strong interaction between the Pd and the polymer backbone was 

identified as responsible for the huge properties changes. Nowadays, metal-organic 

frameworks (MOFs) are among the most relevant synthetic hybrid materials (Figure 

1.1b). These compounds are formed by metallic ions or clusters coordinated with 

organic ligands forming one, two or three-dimensional porous structures that can be 

used for hydrogen storage, catalysis, etc. These examples demonstrate that the 

hybridization can be artificially mimicked, resulting in new materials with 

outstanding properties.  

 

 

Figure 1.1: Examples of synthetic hybrid organic-inorganic materials a) Mayan wall 

painting maintaining the bright blue colour (left) and the structure of the hybrid 

material that generates the coloration (right)16 b) Structure of a MOF17. 
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Since then, lots of efforts have been invested into synthesis and studies of new 

organic-inorganic hybrid materials. However, still nowadays, the most commonly 

used synthetic routes do not differ much from the initial attempt done in 1996. In 

general, two different approaches (Figure 1.2) are used to synthesize a hybrid 

material3:  

 

- Building block approach: In this approach preformed and well defined 

building blocks are mixed and react with each other creating the hybrid 

material. Therefore, the building blocks maintain at least partially their 

molecular integrity and can be found as such in the final hybrid material.  

- In situ formation of the components: Opposite to the previous approach, 

in this case one or both structural units are formed from precursors during 

the hybridization reaction. Thus, the precursors are transformed into a 

novel structure that will be part of the hybrid material.  

 

Both strategies present advantages and disadvantages. For example, the 

performance of the final hybrid material is easier predicted and controlled by the 

building block approach. However, the resulting properties of the hybrid materials 

synthetized by this approach are not very well tuneable. The properties of the hybrid 

materials synthetized by the second approach, on the other hand, are extremely 

sensitive to the reaction conditions, making a prediction of the performance of the 

final hybrid material more difficult. Nevertheless, the properties can be easily tuned 

by controlling the reaction parameters.  
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Figure 1.2: Approaches to synthetize hybrid organic-inorganic materials. a) In the 

building block approach the integrity of the precursors is maintained in the final 

material. b) In the in-situ formation the precursors are converted into a novel 

material. 

 

The in-situ formation of one of the component is the most commonly used 

strategy to create hybrid materials. If the in-situ formed component is the organic 

fraction, polymerization in presence of inorganic clusters is carried out. In contrast, 

for an in-situ formation of the inorganic component, sol-gel strategies in presence of 

an organic polymer are used. However, such approaches have several drawbacks:  

 

- Sol-gel processes are often used for the thermal limitations the presence of 

organic polymers pose. The inorganic solids synthetized following this 

process are often the kinetically, but not the thermodynamically most 

stable structures. Consequently, the obtained inorganic materials are 

usually amorphous or with nanoscale crystalline areas.  

- The distribution of the inorganic agglomerates within those hybrid 

materials is often not homogeneous.  

- The reaction is carried out in a solvent that plays a key role in the stability 

and properties of the final material. The solvent has to dissolve both 

components (and the respective precursors) and it has to be easily 

removable without compromising the stability and properties of the 

synthetized hybrid material, which may not be straightforward.  
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Such drawbacks make researchers keep on looking for different strategies to 

create high performance hybrid materials. In this pursuit, the work presented in 

2009 by Lee et al. enabled many new processing possibilities 18. As opposed to the 

previously studied strategies, in this work the synthesis of the hybrid material was 

not carried out in liquid phase but from the vapour phase. Using a modification of 

Atomic Layer Deposition (ALD), Lee et al. infiltrated spider silk with vapours of 

metal organic molecules. The creation of a hybrid metal-protein material in the 

subsurface area of the silk greatly enhanced the mechanical properties of the silk, 

proving the adequacy of the approach for the synthesis of hybrid organic-inorganic 

materials. 

 

1.2.- Atomic Layer Deposition  

Even if already in the 1960s some initial experiments were done by Russian 

and Finish groups, the real development of Atomic Layer Deposition (ALD) 

occurred in the mid-1970s. The basis of the reactor and the process technology of 

ALD were developed driven by the need of producing high quality ZnS thin films 

for thin film electroluminescent (TFEL) flat panel displays. When T. Suntola and 

coworkers19 first patented the technology in 1974 it was named Atomic Layer 

Epitaxy (ALE). However, scientist soon realized the films did not follow an epitaxial 

growth, but they were mostly amorphous or polycrystalline. Thus, the name was 

changed to Atomic Layer Deposition (ALD) that became generally accepted by the 

end of the twentieth century. However, the real breakthrough of ALD came at the 

beginning of the twenty first century. The continuous and exponential scaling of the 

microelectronic devices created a need for the mass production of rather thin 

conformal coatings in high aspect ratio structures. As a suitable technology to fulfil 

this need, ALD attracted the interest of the major semiconductor companies and 

academic groups who introduced more and more ALD reactors in their laboratories.  

ALD is a cyclic and sequential vapour phase technique to create thin films 

and coatings. Similar to Chemical Vapour Deposition (CVD), the process is based in 

the chemical reaction of two or more gaseous precursors. In the most common ALD 
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processes, one of the precursors is an organometallic, metal organic or halide as 

metal source and the other one is a reactive counter precursor, such as water, 

ammonia or similar. In contrast to CVD, where the substrate is simultaneously 

exposed to all the precursors, in ALD the precursors are temporally separated. As a 

consequence, in ALD the chemical reaction does not occur in the space above the 

substrate, but at the solid-gas interface, where the precursors independently react 

with the surface of the substrate. Each precursor dosing is followed by a purging 

step to remove the excess of the precursor upon saturation and reaction by-products. 

This assures that a maximum of one monolayer of precursor is bound to the surface 

in each cycle. Figure 1.3 illustrates the steps in an ALD deposition of zinc oxide 

(ZnO) with diethylzinc (DEZ) and water as precursors. The process consists of 4 

steps: 

1.- Pulsing of DEZ vapours into the chamber. In this first step, DEZ is carried 

into the chamber by an inert gas (usually N2). This first precursor chemisorbs onto 

the substrate surface by reacting with the functional groups on the surface of the 

substrate (for example hydroxyl groups). 

2.- Purging. The chamber is evacuated and purged by the carrier gas. The 

excess of DEZ and the reaction by-product ethane are removed in this step.  

3.- Pulsing of water vapour into the chamber. The water molecules react with 

the chemisorbed DEZ hydrolysing the Zn-Ethyl bonds. More ethane is created as by-

product and the first layer of ZnO is formed, exposing hydroxyl functionalities at the 

surface and thus restoring the chemical functionality of the surface for the next cycle. 

4.- Purging. The second purging step finalizes the ALD cycle. In this last step, 

the excess water and the by-products are removed.  

By repeating this cycle an additional layer of ZnO is grown on top of the 

substrate with the thickness of the film being a function of the number of applied 

cycles.  
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Figure 1.3: Schematic of the ALD deposition of ZnO using diethylzinc and water as 

precursors.  

 

As a consequence of its special working mechanism, ALD has great 

advantages over other coating techniques. For example, the thin films obtained by 

ALD are characterized by their conformal, pinhole free and uniform nature. Besides, 

as already mentioned, the thickness of the film depends on the number of ALD 

cycles and Ångstrom-scale control is achieved. Finally, the gaseous precursors will 

diffuse and chemisorb to any available surface site, leading to coatings with very 

uniform thickness even in structures with extreme aspect ratios.  

Since the beginning of use of ALD, much effort has been invested in the 

development of processes and precursors that will enable the deposition of a broad 

range of materials. Nowadays, a large variety of materials has been already 

deposited by ALD20–26: metal oxides, metal nitrides, metal sulfides, transition metals, 

perovskites or even noble metals. Also, organic molecules can be used as precursors, 
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resulting in a growth of polymer thin films. Such processes are named molecules 

layer deposition (MLD). Mixed processes of ALD and MLD have also been 

demonstrated, which result in the bottom-up growth of hybrid thin films27,28.  

As a consequence of the high conformality and great control over the 

thickness of the deposited films, ALD became a method-of-choice for various 

applications29. In the past decade, microelectronic applications dominated the ALD 

process development. Initially, the use of ALD was limited to the fabrication of 

insulating metal oxide layers in microelectronic devices, such as dynamic random-

access memory (DRAM) or metal-insulator-metal (MIM) capacitors. In the beginning 

of the 2000s, the production of high-k oxides, especially HfO2, dominated the R&D of 

ALD. More recently, ALD has found applications in further areas such as 

photovoltaics fabrication30 or protective coatings31. Besides, with the boom of 

nanotechnology, ALD is no longer just a thin film deposition technique but it has 

also become a leading technique in the synthesis of nanomaterials: ALD has been 

used for the synthesis of various nanoscale structures from nanoparticles32,33 or 

nanotubes34,35 to complex nanostructured materials36.  

The substrate in most of the examples mentioned so far is a dense solid, such 

as a Si wafer. However, when ALD is applied to a soft or porous material (organic 

polymers, membranes…) the gaseous precursors will not only react with the surface 

functional groups but also can diffuse into and infiltrate the substrate, often even 

reacting with the functional groups of the bulk polymer37.  As a result, apart from 

the thin film creation on top of the substrate, a subsurface growth of the deposited 

material is observed. Thus, when an organic polymer is processed with a metal 

oxide by ALD, a hybrid organic-inorganic material is created in the subsurface area 

of the polymer. The presence of this intermixed area was considered a negative side 

effect at the beginning. However, it was soon discovered that this hybrid layer 

dramatically alters the properties of some polymers. Moreover, it is at the same time 

also a great novel approach for the synthesis of new hybrid materials. In order to 

more controllably promote the creation of this hybrid layer, the ALD process was 

modified resulting in a new technique: Vapour Phase Infiltration (VPI). 
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1.3.- Vapour Phase Infiltration (VPI) 

Vapour Phase Infiltration (VPI) is an emerging vapour phase technique for 

the synthesis of organic-inorganic hybrid materials. Similar to ALD, in VPI the 

synthesis of the hybrid material is based on alternating dosing of two vapour phase 

precursors. However, in this case an additional exposure step is introduced between 

precursor dose and purge (Figure 1.4). In this exposure step, the substrate is exposed 

to the precursor for a variable time period (from 1 second to hours) to allow 

sufficient time for the precursors to diffuse into the substrate and in this way 

infiltrate it.  

Contrary to ALD, the growth of the hybrid material inside the substrate is not 

self-limiting. However, the depth and density of the hybrid area can be controlled by 

some processing parameters, such as the temperature, exposure time, and number of 

cycles.  Thus, by choosing the correct parameters even a complete conversion of the 

substrate into a hybrid material can be obtained.  Being a vapour phase technique, 

the already mentioned problems associated with the use of solvents are eliminated. 

Besides, the VPI process can often be carried out at low temperatures and even at 

atmospheric pressures, making it compatible with a vast range of organic substrates. 

As a consequence of the potential of VPI for the synthesis of hybrid materials, 

various research groups have simultaneously developed their own variations with 

slightly different process parameters and names; Multiple Pulse Infiltration (MPI), 

Sequential Infiltration Synthesis (SIS) and Sequential Vapour Infiltration (SVI). 

However, as the atomic-scale mechanisms are identical in all the variations, they can 

be grouped under the more general term VPI38. 
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Figure 1.4: Schematic of the pressure profiles of a) an ALD process and b) a VPI 

process.  

 

The role hybrid materials play in nature has been widely studied. Thus, it is 

not surprising that the first targets for studying the synthesis of hybrid materials 

through VPI were biomaterials. The study of the VPI of biopolymers has mainly 

focused on its impact on the mechanical properties. As already mentioned, Lee et al. 

were the first ones demonstrating that the mechanical properties of a material were 

greatly increased after a VPI treatment18. They observed that the infiltration of Zn, Ti 

or Al greatly increased the mechanical toughness of spider silk due to the 

incorporation of the metal ions into the protein matrix39. As observed in nature, the 

impressive change in silk´s properties arose from the simultaneous cross-linking of 

the protein chains and reduction of the protein crystallite size caused by the 

infiltrated metal ions. Once the potential of the technique for the modification of 

biomaterials was demonstrated, the modification of many other biomaterials 

through VPI was studied: collagen membranes40, cellulose fibres41, porphyrin 

structures42, etc. 

Observing the impact of VPI in the properties of different biomaterials, some 

research groups started to apply the same process to synthetic polymers.  Similar to 

biopolymers, the first studies focused on the impact of VPI on the mechanical 
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properties of the technical polymers. However, in later works the effect of VPI on 

both the chemical and physical properties of the polymers was studied. Thus, apart 

from the enhancement of the mechanical properties43–45, the modification of technical 

polymers by VPI has lead to a wide range of potential applications. 

For example, by introducing area-selectivity in the VPI process, patterned 

materials can be synthetized. Three main strategies are followed for this purpose: 

using a nanomaterial as a sacrificial template, using block copolymers with different 

reactivity towards the precursors, and lithography. The use of a sacrificial template 

is an efficient and easy way to create patterned nanomaterials through VPI. Even if 

different types of templates and processes have been described46–49, the procedure is 

common for all of them. A polymer is infiltrated with an inorganic material by VPI. 

During the VPI process the organic template will be converted into a hybrid organic-

inorganic material that maintains the morphology of the template. Finally, the 

hybrid material is calcinated and an inorganic replica of the template is obtained. 

Similarly, the use of phase-segregating block copolymers for the synthesis of 

patterned materials is based on the hybridization of a polymer through VPI followed 

by its calcination. However, in this case the most reactive constituent of the block 

copolymer is selectively hybridized thus, after removing the template, the 

nanoscopic domains of this constituent are reproduced. The morphology and size of 

the nanoscopic domains can be tuned by adequately choosing the constituents, 

which allows the creation of a huge variety of patterned materials by VPI50–57. 

Finally, the VPI treatment of photoresist polymers used in lithography significantly 

changes their resistance to etching. Thus, VPI can be combined with lithography to 

eliminate the need of intermediate hard masks and reduce the cost and pattern 

fidelity losses of the lithographic process58–60. 

A further application field that was approached with the VPI-fabricated 

hybrid materials is optics61–66.  The chemical stability and good control over the 

morphology of the hybrid materials synthetized by VPI has also attracted the 

attention of several groups investigating photovoltaic devices67,68. 

However, one of the most promising application fields of VPI is electronics. 

Most of the organic polymers treated by VPI in the last years were electronic 

insulators, so little attention was paid to the impact of VPI processes on their 
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electrical properties. However, very recent publications exploring this potential 

clearly demonstrate that VPI is a powerful technique for tuning polymer-based 

electronics. As an example, Yu et al. improved the performance of a triboelectric 

nanogenerator by VPI of Al2O3 into the three different polymers polydimethyl 

siloxane (PDMS), Kapton and PMMA69. The metalation of the polymers resulted in 

an internal AlOx doping. The AlOx clusters repelled the electrons reducing the ability 

of the doped polymer to retain them, thus increasing the output power of the 

generator.  

A more direct way to alter the electronic properties of polymers by VPI is 

possible as well. Among the different approaches to dope organic semiconductor 

polymers, oxidative treatment with strong acids and the application of transition 

metal oxides or Lewis acids as dopants is common. In this way charge carriers are 

created, which can delocalize along the polymer chain. However, all these processes 

are carried out in a liquid state, which may involve the already described drawbacks 

in processing or post-processing. Thanks to a new doping strategy based on VPI 

processing of polymers developed by Wang et al., doping of organic semiconductors 

without the use of solvents became possible for the first time. In their works they 

increased the conductivity of poly(3-hexylthiophene) (P3HT) films by 5 orders of 

magnitude after infiltrating MoCl5 into the polymer70 and outperformed the 

conductivity values of polyaniline (PANI) doped in the traditional wet-chemical 

way with HCl using MoCl5 or SnCl4 as VPI dopant71. Moreover, the process allowed 

for tuning the conductivity by simply controlling the number of infiltration cycles.  

 

 

 



Chapter 1: Introduction 
 

14 

 
Figure 1.5: Schematic of a PANI substrate after doping with ZnO by VPI. The ZnO 

cross-links the polymer chains oxidizing the polymer backbone and at the same time 

becomes doped through the N from PANI. In this way, both components, the PANI 

and ZnO synergistically contribute to the conductivity of the hybrid. Reprinted with 

permission from 72. Copyright 2017 American Chemical Society.  

 

In both the described processes only the metal-containing precursor was 

supplied and allowed to diffuse and react with the polymer. The same group 

applied a traditional two-precursor VPI process for the infiltration of PANI with 

ZnO with really surprising results72. After the infiltration, the resulting PANI-ZnO 

hybrid material consisted of PANI chains that were cross-linked by Zn-N and Zn-O 

bonds (Figure 1.5). Simultaneously, and in consequence, quinoid groups within the 

polymeric chain were turned benzenoid groups, which clearly showed that the 

Lewis acid was able to dope PANI. However, the unexpected high values of the 

conductivity (18,42 S/cm) pointed towards a synergy through mutual doping of 

both constituents, the polymer and the embedded ZnO. Namely, the infiltrated ZnO 

acts as dopant for the PANI, while at the same time, through binding of Zn to the 

nitrogen in PANI, the infiltrated ZnO becomes nitrogen-doped. This work is a 

breakthrough in the electronic modification of polymers and opens up new 

possibilities, for example the electronic conversion of insulating high performance 

technical polymers, such as Kevlar®. 

 

infiltration with short exposure times of 8 s yielded
conductivities similar to those of the HCl-doped case. The
exposure times are correlated with the infiltration depth; thus,
extended exposure times promise a better performance. Indeed,
upon extending the exposure time to 120 s, the conductivities
of the HCl-doped sample were outperformed by more than 2
orders of magnitude. Further improvement was achieved by
altering the number of infiltration cycles. Peak values up to
18.42 S/cm were achieved with 600 cycles. Note that the
measured conductivities are significantly higher than those (up
to 6.8 × 10−3 S/cm) of PANI/ZnO nanocomposites produced
with competing approaches.17 A further increase of the cycle
number toward 700 and 900 lowered the conductivities, which
might be due to the increasing dominance of the growing
external ZnO coatings. It is worth noting that the PANI/ZnO
samples were temporally very stable. Upon exposure to
laboratory air for 6 months, the conductivities of PANI/ZnO
(600 cycles) decreased by a factor of 3−4 only, that is, from
18.42 to 5.67 S/cm (Figure S1, Supporting Information).
The observation that both precoating PANI with an

infiltration barrier and variation of the exposure times greatly
affect the conductivity values implies that the observed
conductivity is not resulting from the PANI or ZnO only but
a synergy of the involved materials is of crucial importance.

From the morphological point of view, the polymer did not
show obvious changes after infiltration. In Figure 3, scanning
electron micrographs of PANI nanofibers before and after
infiltration with ZnO (200 cycles) are shown. Only slight
variations in the fiber diameters resulting from unavoidable
surface-deposited ZnO upon infiltration are seen. Transmission
electron microscopy (TEM) and energy-dispersive X-ray
spectroscopy scans of cross-sectioned fibers showed a
significant presence of Zn in the bulk of the material. The
ZnO coating may contribute to the conductivity of PANI by
allowing an electron hopping mechanism in principle, but given
the large differences observed from the coated and infiltrated
samples, it is more likely that Zn interacts with the functional
groups of the polymer in some way that is beneficial for
electron conduction. Such a scenario is also favored by the
high-resolution TEM (HRTEM) and selected area electron
diffraction (SAED) analyses shown in Figure S2, Supporting
Information. The interplanar spacings, as measured from SAED
patterns, were 0.17, 0.19, and 0.21 nm, corresponding to the
(440), (431), and (332) planes of the c-zinc nitride structure.26

Further identified interplanar spacings of 0.15 and 0.21 nm
correspond to the (103) and (101) planes of ZnO.27,28 The
HRTEM image shows the formation of crystallites within the
polymer. Those form a network with gaps on the nanometer or
subnanometer scale between the crystallites. Thus, it can be
assumed that the formation of −Zn−N− or −N−Zn−O−
bonds is an influencing factor for the conductivity of the
resulting hybrid material.
The chemical functionalities in PANI, which allow binding

with metal ions, are in the first instance the amine (−NH) and
imine (−N) groups. In typical infrared spectra, the bands at
1593 cm−1 (quinoid CN stretching), 1300 cm−1 (N−H
bending), 1220 cm−1 (benzenoid C−N stretching), and 829
cm−1 (out-of-plane C−H bending) are assigned to the EB
structure. We performed an infiltration process with five cycles
only to minimize the amount of surface-deposited ZnO and in
this way enable observation of the chemical changes in the
polymer. Figure 4a shows that infiltration at temperatures
below 100 °C did not affect the aforementioned peaks. A
stepwise increase of the process temperature from 120 to 180
°C resulted in the bands at 1593 and 1220 cm−1 shifting blue
and the bands at 1300 and 829 cm−1 shifting red. Obviously, a

Figure 8. UV−vis absorption spectra of PANI (black) and ZnO-
infiltrated PANI applying five infiltration cycles and 120 s exposure
time at 155 °C.

Figure 9.Macroscopic view of the hybrid material with covalently linked N-doped ZnO and Lewis-acid-doped PANI. Idealized schematic view of the
chemical binding of Zn to the PANI backbone upon infiltration. The polymer chains become cross-linked with Zn−N bonds, while at the same time
quinoid groups become benzenoid groups.

ACS Applied Materials & Interfaces Research Article

DOI: 10.1021/acsami.7b09270
ACS Appl. Mater. Interfaces 2017, 9, 27964−27971
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1.4.- Kevlar® 

Commonly known as Kevlar, poly (p-phenylene terephthalamide) (PPTA) is a 

high-strength, high modulus and thermally stable synthetic polymer. Kevlar´s 

outstanding properties arise from its unique chemical structure discovered by 

Stephanie Kwolek in 1965 at Du Pont laboratories.  

The invention of Nylon and polyesters in the 1960s opened the market for 

synthetic polymeric fibres. The use of these man-made polymers rapidly spread over 

different application fields, from industrial to daily life applications. However, the 

strength and toughness of these polymers were not particularly high. In order to 

obtain the maximum breaking strength and toughness modulus, the polymer chains 

had to be in extended-chain configuration and almost perfectly crystalline packed. In 

the case of Nylon and polyesters, post spinning mechanical treatment was required 

for the detangling and orientation of their flexible chains. However, the mechanical 

properties obtained after this treatment were far from the theoretically predicted 

values. This pushed the researchers towards the synthesis of extended rigid chain 

polymers and Kevlar was created.  

Chemically, Kevlar is composed of para-di-substituted benzene rings, 

interconnected with amide groups (Figure 1.6). Due to the rigidity of the polymer 

backbone, Kevlar is present in an almost perfect extended chain configuration. The 

repetitiveness of the molecular backbone and the para position of the amide groups 

enable the creation of intermolecular hydrogen bonds and arrangement of the 

polymeric chains in ordered domains, known as lamellae.  The lamellae are around 

600 nm wide and have an average length of 35 nm73.  These ordered domains are 

stacked along the fibre axis, separated by defect zones, forming fibrils. Finally, the 

fibrils are joined together by tie points creating plated sheets, radially stacked to 

form the Kevlar fibre74–76.  
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Figure 1.6: Chemical structure and morphology of Kevlar fibres.  

 

Due to its highly ordered morphology, Kevlar acts as a lyotropic liquid 

crystalline polymer. The crystalline structure of Kevlar is described as monoclinic 

(pseudo-orthorhombic) with the unit cell parameters being a=7,87 Å, b=5,18 Å and c 

(fibre axis)=12,9 Å77. This unique structure is responsible for the outstanding 

physicochemical properties of the polymer.  

As the alignment of the polymeric chains is promoted during the spinning 

process, Kevlar is almost exclusively produced in form of fibres or woven fabrics. 

However, the crystallinity can be controlled by tuning the polymer chain length and 

the processing parameters. Thus, various types of Kevlar with very different 

properties are available on the market. Kevlar 29 is the most widely used variation of 

Kevlar and is used for ballistic applications, ropes and cables, cut-resistant gloves, 

helmets, tire reinforcement, etc. Another commonly used variation is Kevlar 49 or 

high-modulus Kevlar. This type of Kevlar is used in more specific applications, 

including fibre optic cable or composites for marine sporting goods or aerospace 

applications. A comparison of the most characteristic mechanical properties of 

Kevlar 29 and Kevlar 49 is shown in Table 1.1.  
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Table 1.1: Comparison of the characteristic mechanical properties of Kevlar 29 and 

Kevlar 4978. 

Property Kevlar 29 Kevlar 49 

Breaking strength (N) 338 264 

Tensile Modulus (MPa) 70.500 112.400 

Elongation at break (%) 3,6 2,4 

 

Apart from the great mechanical properties, Kevlar also posses a really high 

chemical stability. As a consequence of the large amount of intermolecular 

interactions and the tight crystalline packaging, hot and concentrated sulphuric acid 

is needed to dissolve Kevlar. Besides, extended exposure (up to 100 hours) to strong 

acids or bases, such as sodium hypochlorite or hydrochloric acid, are needed for 

appreciable degradation of the mechanical properties of the fibres78. Similarly, the 

resistance of Kevlar to hydrolysis is notable as only 10% of the strength is lost after 

70 hours of exposure to saturated steam. Regarding the thermal stability, Kevlar 

does not melt but it decomposes at high temperatures (around 540ºC in nitrogen 

atmosphere and 430ºC in air). Finally, Kevlar is a good thermal insulator and 

inherently flame resistant.  

However, as Kevlar´s properties arise from its highly ordered structure, any 

external factor altering this order will have an impact on the mechanical properties. 

Among these external factors temperature and UV radiation have the strongest 

impact.  In the case of temperature, exposure of Kevlar fibres to 250ºC during 60 or 

more hours causes a reduction of its tensile strength by 70%. The reason of this 

enormous impact on the mechanical properties is the change in the crystal 

dimensions. As already mentioned, Kevlar resembles a liquid crystal and its ordered 

structure is obtained from the liquid crystalline state. However, as the 

intramolecular interactions overcome the intermolecular forces (hydrogen bonding 

and Van-der-Waals forces), a Kevlar crystal is merely packing of frozen chains and 

not in an equilibrium state. Thus, when the fibres are exposed to high temperatures 

water molecules trapped within the polymer are released and in addition the 

polymeric chains gain mobility with introduction of thermal energy. As a 

consequence, more hydrogen bonds are formed and the b lattice parameter is 
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shortened, decreasing the crystallite size75,79. Regarding UV radiation, Kevlar shows 

a strong absorption peak in the 300-400 nm range. The light of this wavelength range 

has sufficient energy to break chemical bonds within the polymer chain. Thus, 

exposure of Kevlar to UV light causes chain-scission and end group oxidation 

reactions, which degrades the fibres80. As a consequence of its thermal and UV 

sensitivity, Kevlar fibres and fabrics have to be protected from sunlight, limiting the 

practicability of Kevlar for some applications.  

Being a polymer created out of the need of high modulus fibres, it is not 

surprising that the use of Kevlar has mainly being limited to mechanically 

demanding applications. As a consequence, the vast majority of the studied 

modifications of Kevlar target a better mechanical performance. The modifications of 

Kevlar studied so far can be divided into modifications of the chemical structure on 

the one hand and the post-synthetic modifications on the other hand. Since an 

extended chain configuration is key for the mechanical properties, new liquid 

crystal-like polymers aiming to outperform Kevlar´s properties (Nomex®, 

Vectran®…) have been developed by modifying the functional groups of Kevlar 

while maintaining a rigid aromatic backbone. Regarding post-synthetic 

modifications, the formation of a composite material, that is, Kevlar fibres embedded 

in a matrix, is still the most common approach. Besides, the functionalization of 

Kevlar by treatment of its surface or coating of the fibres is also performed. The 

surface of Kevlar fibres is usually treated for a better adhesion of the fibres to the 

matrix in a composite material81,82. Coating the fibres with a resin or a metal oxide 

protects the fibres from UV radiation, thus preventing the degradation of the 

mechanical properties83–86. However, little to none research has been done in the 

modification of further properties of Kevlar, such as thermal or electrical properties.  

Lately, since flexible and wearable electronics are gaining importance, 

functionalization of polymeric fibres for the integration of electronic devices into 

textile or other applications is attracting great interest87–91. As electrical conductivity 

is needed, conducting organic polymers such as PANI or PEDOT:PSS are most used 

as polymeric substrates. Nevertheless, some works have been already published, 

showing Kevlar can be successfully used as the base materials for e-textile devices92–
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95. In all those cases, Kevlar is selected because of its great mechanical properties and 

it is coated with a conducting material for introducing conductivity.  

 

1.5.- Objective and structure of the thesis 

This thesis aims to explore the potential of VPI for the synthesis of 

multifunctional hybrid organic-inorganic materials. Using Kevlar as a case study, the 

synthesis of hybrid materials through ALD and VPI of metal oxides and technical 

polymers as substrates is studied. The thesis aims to demonstrate that not only 

mechanical properties of technical polymers can be improved by VPI, but also new 

functionalities, such as electrical conductivity, can be introduced. The effect of the 

hybridization of polymer with inorganics on different properties is explained thanks 

to the elucidation and understanding of the structure and interactions of the 

synthetized hybrid materials.  

Chapter 2 overviews the experimental techniques and methods used in this 

thesis for the chemical and physical characterization of the samples. 

Chapter 3 describes the improvement of the stability of Kevlar against 

exposure to elevated temperature and UV light thanks to the VPI of ZnO. The 

structure of the synthetized Kevlar-ZnO hybrid material is theoretically predicted 

and experimentally proven.  

Chapter 4 presents a novel combination of ALD and VPI for the synthesis of 

multiscale hybrid materials. The improvement of the toughness of Kevlar fibres 

resulting from the application of this combined ALD/VPI process is analysed. 

Chapter 5 focuses on the synthesis and characterization of a conductive and 

photoactive Kevlar.  The electrical conductivity of the hybrid Kevlar after various 

infiltration cycles is characterized. The photocatalytic activity of the samples under 

visible light is studied analysing the degradation of Rhodamine B in contact with the 

modified Kevlar and under exposure to visible light.  

Finally, the main conclusions and the future perspective are presented in 

Chapter 6.  
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Chapter 2 

Experimental techniques and methods 

 

2.1.- Fourier Transform Infrared Spectroscopy (FTIR) 

Infrared spectroscopy (IR) is a non-destructive technique for the qualitative 

analysis of gaseous, liquid or solid samples. This technique provides information 

about the chemical functional groups present in the analysed sample. The sample is 

irradiated with an infrared (IR) light beam, with wavelengths between 1000 and 

50000 nm, even if usually a smaller region between 2500 and 25000 nm is used. 

When exposed to the infrared light beam, an excitation of molecular bonds to a 

higher vibrational energy state occurs by absorption of photons with a specific 

energy that varies depending on the chemical groups. The wavelengths that are 

absorbed by the sample are characteristic of its molecular structure. As a result of the 

analysis, a plot of the absorbance or transmittance versus wavenumber is obtained, 

where the absorptions appear as bands characteristic for various types of molecular 

bonds.  

In the case of Fourier Transform Infrared spectroscopy (FTIR), the absorption 

is simultaneously measured at all the infrared frequencies. For that, a Michelson 

interferometer is used that splits the IR light beam into two beams. One of the beams 

is directed to a fixed mirror while the other is directed to a movable mirror. Finally, 

the two beams are recombined and, as they have followed different paths, their 

interference is measured. As a result, an interferogram is obtained which depends on 

the time or the moving mirror position. In order to obtain a frequency spectrum, 

where the absorption is shown as a function of frequency, a mathematical technique 

called Fourier transformation is applied.  

2.1.1.- Attenuated total reflectance FTIR (ATR-FTIR) 

The attenuated total reflectance (ATR) accessory is frequently used for FTIR 

measurements. By means of this accessory the near surface region of the sample is 
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analysed rather than the bulk. In ATR, the IR beam is coupled into a crystal with a 

high refractive index by directing the IR beam to the crystal in a specific angle. Once 

coupled in, as a consequence of the high refractive index of the crystal, multiple total 

internal reflection of the beam occurs before it can be coupled out again. Resulting 

from the total internal reflection of the beam an evanescent wave is created that 

extends around 0,5-3 µm beyond the crystal surface and into the sample, when a 

sample is in direct contact with the crystal (Figure 2.1a). The evanescent wave will be 

attenuated or altered in the regions of the IR where the sample absorbs energy.  The 

attenuated IR beam exits the opposite end of the crystal towards the detector, 

containing information of the functional groups present in the region of the sample 

closest to the crystal.  

For all ATR-FTIR experiments performed in this thesis a Perkin Elmer 

Frontier FT-IT spectrometer was used. The analysed samples were woven fabric 

pieces. 

2.1.2.- Fourier transform infrared nanospectroscopy (nano-FTIR) 

The resolution of any spectroscopic method is limited by the diffraction limit 

of the used light. An ideal optical system would image an object point perfectly as a 

spot. However, due to the wave nature of light, diffraction occurs, and the image of 

a point is a blurred spot, regardless of how well the system is focused. As Ernest 

Abbe discovered in 1873, light with wavelength λ travelling through a material with 

a refractive index n makes a spot with a diameter d= λ/2NA, NA being the 

numerical aperture (NA= n sinθ, where n is the refractive index and � is the 

maximal half-angle of the cone of light that can enter or exit the lens). Considering 

an average numerical aperture (NA=1), the smallest distance between two points 

that can be image would be λ/2. Thus, the diffraction limit in FTIR spectroscopy is 

around 400 nm, which is too large to analyse nanometre scale structures.  
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Figure 2.1: Schematic diagrams of a) the attenuated total reflectance (ATR) FTIR 

principle b) s-SNOM and nano-FTIR set-up96. The light source for tip illumination 

can be chosen with a flip mirror (FM) between a tuneable single line laser (quantum 

cascade laser, QCL) for s-SNOM and a mid-infrared continuum source (fibre laser 

plus difference frequency generator, DFG) for nano-FTIR. The beam splitter (BS, 

uncoated ZnSe), the reference mirror (RM) and the detector form a Michelson 

interferometer that analyses the light backscattered from the tip. The interferometer 

operates either in pseudoheterodyne mode (for s-SNOM imaging) or as a Fourier 

transform spectrometer (for nano-FTIR spectroscopy). Adapted with the permission 

from Springer Nature 96. Copyright 2013 

 

However, the diffraction limit can be bypassed using near-field techniques 

that operate less than 1 wavelength away from the image plane. Fourier transform 

infrared nanospectroscopy (nano-FTIR) is among these near-field techniques96. 

Nano-FTIR is based on another near-field imaging technique, the scattering-type 

scanning near-field optical microscopy (s-SNOM) (Figure 2.1b). In s-SNOM infrared 

images with nanoscale spatial resolution are obtained by recording the infrared light 

scattered at a metallized atomic force microscopy (AFM) tip. The tip acts as an 

antenna, concentrating the incident field at the apex, for local probing of molecular 

vibrations. In nano-FTIR, the AFM tip is illuminated by broadband infrared 

radiation and FTIR spectroscopy of the scattered light is done yielding infrared 

spectra with spatial resolution down to 20 nm.  

 



Chapter 2: Experimental techniques and methods 
 

 24 

2.2.- Electron microscopy 

As already explained, the resolution of spectroscopic analyses and optical 

imaging techniques is diffraction limited. Besides the near-field techniques, changing 

the illumination source to smaller wavelengths is another common strategy to 

overcome this limitation. In electron microscopy techniques a beam of accelerated 

electrons is used as an illumination source. In this case, the wavelength of the 

electron beam depends on its acceleration, namely the higher the acceleration, the 

shorter the wavelength and the higher the resolution. The resolution of modern 

electron microscopes is nowadays limited to around 0,1 nm due to the objective lens 

system. Therefore, electron microscopy is one of the most important techniques for 

imaging nanomaterials.  

When the sample is exposed to an accelerated electron beam, various kinds of 

interactions occur between the electrons and the sample. These interactions produce 

a loss of energy that is converted into heat, emission of low energy secondary 

electrons, high energy backscattered electrons, X-ray emission, etc., all of which can 

be used to characterize a sample microscopically or spectroscopically. The most 

common setups for this purpose include scanning electron microscopy (SEM) and 

transmission electron microscopy (TEM).  

2.2.1.- Scanning electron microscopy (SEM) 

In scanning electron microscopy (SEM) an electron beam scans across the 

sample surface and interacts with the sample. Typically, secondary electrons that 

emit from the sample surface upon excitation or elastically backscattered electrons, 

are detected. The amount of emitted secondary electrons depends on the topography 

of the surface of the sample, while the intensity of the backscattered electrons 

depends on the atomic number Z. Thus, the detection of these electrons enables the 

topological or compositional imaging of the sample surface.  Further modes in SEM 

imaging involve detection of characteristic X-rays, cathodoluminescence, 

transmitted electrons or charge of the sample. 

For the SEM experiments performed in this thesis, a Quanta TM 250 FEG 

(FEI) SEM was used. The imaging of the samples was carried out using a large field 

detector (LFD), at 70 Pa and with 10 kV as accelerating voltage.  
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2.2.2.- Transmission electron microscopy (TEM) 

In the case of transmission electron microscopy (TEM) the transmitted 

electrons are detected to generate an image of the sample. As the electrons have to 

pass across the sample, only thin samples can be analysed. The transmission of the 

electron beam depends on the interaction of the beam with the sample and thus on 

the atomic number Z. The resolution obtained in TEM is typically higher than in 

SEM and with a well-adjusted TEM, even crystalline lattices of materials or single 

atoms can be observed.  

2.2.3.- Energy-dispersive X-ray spectroscopy (EDS) 

This analytical technique is used for the elemental analysis of a sample. In this 

case, the accelerated electron beam excites an electron from an inner electron shell of 

the atoms in a sample, that it is ejected leaving a hole behind. This hole is filled with 

an electron from an outer shell, releasing the energy difference in form of X-ray 

radiation. The energy of the emitted X-rays is characteristic and thus specific of an 

emitting atom. Therefore, EDS allows precise determination of the elemental 

composition of the sample. Generally, EDS is carried out together with TEM or SEM 

imaging so the elemental composition can be correlated with the topographical 

information. 

In all the TEM-EDS experiments performed in this thesis, a FEI Titan 

microscope operating at 300 kV in scanning transmission electron microscopy 

(STEM) mode, equipped with an EDAX SDD detector, was used. The analysed 

lamellae were prepared by cutting cross sections of the fibres by a Focus ion beam 

(FIB) and thinned to transparency using a 5 kV gallium ion beam.  

 

2.3.- X-ray diffractometry (XRD) 

X-ray diffractometry (XRD) is a technique to analyse the crystallinity of a 

sample. In addition, XRD can be used for the identification of a crystalline material, 

determination of different phases in a polymorphic material, quantification of the 

crystalline phase, etc. This technique is based on the analysis of constructive 

interferences of monochromatic X-rays interacting with a crystalline sample. A 

monochromatic X-ray beam irradiates the sample at a grazing incident angle θ and 
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the detector collects the reflected beam at an angle 2θ with respect to the incident 

beam, as indicated in Figure 2.2. The interaction of the incident X-ray with the 

sample will produce constructive interferences. When the conditions satisfy Bragg´s 

law (2d sinθ = nλ, d being the spacing between the diffracting planes, θ the incident 

angle of the beam and λ the wavelength of the beam) a peak will occur in the 

reflected beam. From the analysis of these reflected peaks information about the 

different crystalline planes present in the sample is obtained. 

 
Figure 2.2: Schematic of the principle of XRD, showing the interaction of an X-ray 

beam with a crystal. When the Bragg´s condition is fulfilled, constructive 

interferences create a reflected peak characteristic of the crystalline material.  

 

The XRD measurements carried out in this thesis were done in an X´Pert 

PANalytical diffractometer, with a Cu Ka (λ=0,154 nm) radiation source. During the 

measurements, the working voltage and current were 45 kV and 40 mA, 

respectively. The analysed samples were in form of woven fabric. 

 

2.4.- Uniaxial tensile tests 

The study of the mechanical properties of a material supplies information 

about the behaviour of the material when subjected to forces. Knowing the 

mechanical properties of materials before implementation into an application is of 

great importance to ensure a reliable performance. Depending on the final 
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application of the material, different mechanical tests can be performed and 

parameters studied. 

Uniaxial tensile tests are the most common mechanical tests and involve 

application of a stretching force to a sample until its rupture. To carry out a tensile 

test, one of the ends of the sample is clamped in a loading frame while the other end 

is clamped to a sliding frame. The sliding frame displaces in a constant velocity 

parallel to the sample axis, while the displacement and the applied force are 

measured simultaneously. The result of a tensile test is a stress-strain curve, as 

schematically shown in Figure 2.3a, where the elongation of the sample is 

represented as a function of the applied load. The strain (ε) is defined as the relative 

elongation of the sample in the direction of the applied force. The engineering stress 

(σ) is calculated by dividing the applied load by the cross sectional area of the 

sample (A). A common strain-stress curve can be divided into two sections; elastic 

area and plastic area. In the initial stage or elastic area, the curve shows a linear 

relationship between strain and stress, the slope of which is known as Young´s 

modulus (E). Within this elastic part of the curve, upon unloading no permanent 

deformation of the material is observed. At the yield point, the curve reaches the 

area of plastic deformation of the material, which is permanent even after unloading. 

The maximum stress that a material can withstand is known as ultimate tensile 

strength (UTS). Continued stress beyond this point results in fracture of the material. 

The area under the strain stress curve is defined as the Modulus of Toughness (Ut) 

and corresponds to the energy the material can absorb before rupture.  
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Figure 2.3: a) Illustration of a strain-stress curve b) Tensile test sample holder. 

 

The measurements in this thesis were done in a BRUKER Universal 

Mechanical Tester with a resolution of 50 µN and in accordance to the ASTM 

standard C1557-03 (2008). The fibres were fixed in a cardboard sample holder 

(Figure 2.3b), which has a punched hole of 6 mm diameter in the centre. After 

vertical alignment of the fibre across the hole, the sample holder is positioned in the 

mechanical tester with the fibre being un-strained. Finally, the sample holder is cut 

along the central guides and tensile force is applied while the strain is measured. 

Further specific used methods are explained in the individual chapters.  
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Chapter 3 

Improving Kevlar´s stability through vapour phase 

infiltration of ZnO 

 

 

In this chapter, the improvement of the thermal and UV stability of Kevlar 

through the infiltration and hybridization with ZnO is described. The vapour phase 

infiltration of ZnO into Kevlar fibres leads to the creation of a ZnO-Kevlar hybrid 

material in the subsurface area of the fibres. The structure of the hybrid, which is 

theoretically modelled and experimentally proven, consists of ZnO clusters grown 

among covalently cross-linked Kevlar chains. The infiltrated ZnO reacts with the 

polymeric chains, cross-linking them through N-Zn-O bonds and substituting the 

original hydrogen bonds. With this innovative route, Kevlar fibres are protected 

from thermal and UV-induced degradation without compromising their lightness 

and flexibility.  
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The work described in the present chapter is published in the journal 

Chemistry of Materials from the American Chemical Society (ACS). Graphs, figures 

and parts of the text of the publication are reused in this thesis with permission of 

the publisher.97 

 

Article: 

Suppressing the thermal and ultraviolet sensitivity of Kevlar by infiltration and 

hybridization with ZnO. I. Azpitarte, A. Zuzuarregui, H. Ablat, L. Ruiz-Rubio, A. 

López-Ortega, S. D. Elliott and M. Knez. Chemistry of Materials, 2017, 29, 10068-10074
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3.1.- Introduction 

Among the most important functionalities of natural materials are the 

mechanical properties, which in the course of billions of years of evolution have 

been optimized in various ways in order to fulfil the needs of a species in a specific 

environment. The optimization may involve structural features, such as the 

honeycomb structures98,99, structural and compositional features, such as bones or 

shells100,101, or dominantly compositional features. The last of these usually involves 

the incorporation of metals, such as Zn, Cu and Mn, into protein matrices, which 

result in exceptional improvement of the strength or hardness of the protein4–6.  It is 

reasonable to assume that intentional incorporation of metals into artificial soft 

matter may also have positive effects on its mechanical properties. Especially vapour 

phase processing has been shown to greatly improve the toughness of some 

biopolymers (such as spider silk18, collagen40, cellulose41) through inclusion of very 

simple metal organic molecules into proteins or polysaccharides. However, the 

impact of this strategy on high-strength synthetic polymers of technological 

importance has never been reported.  

Polymeric fibres with high strength are often called upon whenever a material 

with extraordinary mechanical performance is needed. Among such polymers, 

Kevlar is most prominent for its great mechanical toughness without the need of 

complex processing. Kevlar shows liquid crystal-like behaviour, such as great tensile 

strength, strong energy absorption and thermal insulation. Such outstanding 

properties in a material with great flexibility and low weight have made Kevlar the 

material-of-choice in many application fields including personal protection, sports 

equipment and aerospace. 

In many of these applications Kevlar is exposed to harsh environmental 

conditions, including high temperature, UV radiation, and/or moisture which often 

degrade its mechanical properties79,80,102–104. In order to prevent the loss of 

mechanical properties, various approaches have been evaluated, most of them based 

on coating Kevlar fibres with a resin or a metal oxide 93,95,105–107. The drawback of 

such coatings is on the one hand the extra weight of the resin and on the other hand 

the reduced flexibility upon coatings with brittle metal oxides. Therefore, 
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development of new routes for protection of Kevlar from thermal and UV-induced 

degradation along with preservation of its weight and flexibility, are in high 

demand.  

In this chapter, we present a new approach for the stabilization of the 

mechanical properties of Kevlar fibres based on vapour phase infiltration of the fibre 

with ZnO. We use vapour phase infiltration (VPI)18,108 to infiltrate zinc oxide into 

Kevlar in analogy to many naturally occurring hybrid biomaterials. We compare the 

properties of ZnO-infiltrated fibres with those of ZnO-coated fibres to demonstrate 

the advantages of this new approach. 

 

3.2.- Experimental  

3.2.1.- Sample preparation 

The examined Kevlar fibres were obtained from the woven commercially 

used in bulletproof vests (Kevlar 29). The fibres had diameters of 10 µm and were 

cut to lengths of 3 cm for the experiments.  

The modification of the samples was performed in a commercial ALD reactor 

(Savannah S100, Cambridge NanoTech Inc). Both infiltration and coating of the 

fibres were carried out at 150ºC under a constant nitrogen gas flow of 20 standard 

cubic centimetres per minute (sccm). Diethyl zinc (DEZ, Zn(Et)2, Strem Chemicals) 

was used as the zinc source and demineralized water as the oxygen source. The 

coated fibres (C-ZnO) were prepared following a typical ALD process with a cycle 

consisting of Pulse(DEZ, 0.08s)/Purge(N2, 30s)/Pulse(H2O, 0.08s)/Purge(N2, 30s). In 

contrast, the infiltrated fibres (I-ZnO) were prepared by VPI. A VPI cycle consisted 

of Pulse(DEZ, 0.08s)/Exposure(30s)/Purge(N2, 30s)/Pulse(H2O, 

0.08s)/Exposure(30s)/Purge(N2, 30s). In both cases, the number of repetitive 

ALD/VPI cycles was 200. 

3.2.2- Characterization 

TEM characterization and EDS analysis were carried out with a FEI Titan 

microscope using 300 kV in STEM mode and an EDAX SDD detector. 
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Density functional theory (DFT) was applied to compute the electronic 

structure of oligomers of Kevlar and ZnO-infiltrated Kevlar in vacuum.  The 

Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional109 was used with 

the SV(P) basis set (split valence with polarization at all non-hydrogen atoms) as 

implemented in TURBOMOLE110 with the resolution of the identity (RI) 

approximation for Coulomb integrals111 accompanied by the corresponding 

auxiliary basis sets112. The ‘‘m4’’ integration grid of the module RIDFT was 

used113,114. Geometries were freely optimized using redundant internal coordinates115 

until gradients were <10-6 Hartree/Bohr. Optimized structures were visualized with 

Materials Studio version 7.0. The computed system was composed of a total of 8 

rings of Kevlar in the gas phase.  Two adjacent oligomers, each consisting of four 

covalently bound monomers, were connected via three hydrogen bonds.  This meant 

that the two central monomers of each oligomer, along with the central hydrogen 

bond, are likely to experience an environment representative of the polymer chain.  

Computing the structure in the gas phase meant that the geometry of the oligomers 

with and without ZnO could be freely optimized without imposing any particular 

periodic lattice.  To model the infiltrated sample, the H of all three hydrogen bonds 

were replaced with [Zn(OH)] cross-links. The theoretical part of the work was 

performed by the group of Dr. Simon Elliott at the Tyndall National Institute in 

Cork, Ireland.  

The XRD patterns of the samples were measured with a PANalytical X’Pert 

Pro diffractometer with Cu-Kα radiation. For an easier measurement, woven fabric 

Kevlar pieces were analysed, instead of individual fibres. 

The FTIR spectra were carried out in a Perkin Elmer Frontier spectrometer 

with an ATR sampling stage. All spectra were measured with 20 scans from 520 to 

4000 cm-1 at 4 cm-1 resolution. Each sample was measured 5 times and the results 

averaged.  

The thermal stabilities of the samples were analysed using a DTG-60 

Shimadzu Thermobalance. The samples (5-10 mg) were heated from room 

temperature to 700ºC. The scanning rate was 10ºC·min-1 and all measurements were 

carried out under nitrogen atmosphere. The thermo gravimetric analyses were 
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performed by Dr. Leire Ruiz-Rubio in the Macromolecular Chemistry Laboratory of 

the Basque Public University (UPV). 

The tensile tests were done with a BRUKER Universal Mechanical Tester with 

a resolution of 50 µN and in accordance to the ASTM standard C1557-03 (2008). To 

determine the stability of the fibres under UV light the samples were exposed to 

light with a wavelength of 365 nm for 24 hours. Subsequently the strain-stress curves 

were measured and compared with the mechanical properties of unexposed fibres. 

 

3.3.- Results and discussion 

In order to evaluate the efficiency of the infiltration process we compared 

cross-sections of ZnO-infiltrated Kevlar fibres (I-ZnO) and ZnO-coated Kevlar fibres 

(C-ZnO). Figure 3.1 shows the TEM images and EDS colour maps of the cross-

sectioned area of both samples.  

 
Figure 3.1: TEM images of cross-sections of a) C-ZnO and b) I-ZnO fibres. Insets 

show EDS colour maps with the carbon signal coded red and the zinc signal coded 

blue.  

 

The TEM image shows that, even if the aim of the VPI processing is the ZnO 

infiltration into Kevlar, an unavoidable ZnO layer is created on top of the VPI 

processed sample. This is a consequence of VPI being an ALD-derived technique, 

thus a coating will always occur in parallel to the infiltration. However, a clear 
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difference between the coated and the infiltrated sample is shown, specifically at the 

interface between the ZnO layer and the fibre surface. In the case of C-ZnO, this 

interface is sharp and clear, while in the case of I-ZnO, it is blurred with a gradual 

decay of the Zn signal down to 30 nm depth below the surface of Kevlar. In this 

subsurface area, the Zn appears distributed as a ZnO network embedded into the 

polymer. Therefore, successful infiltration of Kevlar fibres with ZnO through VPI is 

confirmed.  

Based on the literature, we expected the infiltrated ZnO to interact with the 

Kevlar chains creating a hybrid metal oxide-polymer material. Previous studies of 

ZnO ALD116,117 indicate that DEZ adsorbs to Lewis basic sites (such as carbonyl O or 

amide N of Kevlar) and that transfer of the most acidic proton (here the amide NH) 

causes an ethyl ligand to be eliminated as ethane. The remaining ligand is eliminated 

in the H2O pulse, producing an OH group on Zn. In standard ALD, this hydroxyl 

group would react during next DEZ pulse, acting as a nucleus for the growth of a 

cluster or film of ZnO.  

 Based on that, substitution of the amide-H+ of Kevlar with [Zn(OH)]+ was 

expected in the case of the I-ZnO Kevlar sample. The probability of such chemical 

reactions between the used precursors and the polymer backbone were modelled by 

density functional theory (DFT). A system of two adjacent Kevlar strands, with 4 

aromatic rings in each one, was used as model for the calculations. As shown in 

Figure 3.2a, the initial reaction between the infiltrated DEZ/water and Kevlar 

(simulating the first VPI cycles) consisted of the replacement of the amide protons 

with [Zn(OH)]+. It can be seen that the inter-chain H-bonds have been substituted 

with an ionocovalent N-Zn(OH)-O cross-linkage. This substitution causes an 

increase of the interchain distance, as the computed bond lengths for N-H and H-O 

were 1.03 Å and 2.09 Å, respectively, and changed to N-Zn and Zn-O bonds with 

1.94 Å and 2.08 Å lengths. The creation of the Zn-O bond is accompanied by the 

stretching of the amide C=O bond, which changes from 1.24 Å to 1.27 Å. The 

computed reaction energy (including the evolution of ethane) is -115 kJ/mol per Zn 

atom, relative to the energies of DEZ and H2O in the gas phase.  

When the reaction between this initial cross-linked model and DEZ/water 

was computed, simulating continued processing with VPI cycles, two energetically 
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similar reaction pathways were possible, namely (i) continued crosslinking through 

the replacement of H-bonds with new ionocovalent linkages and (ii) growth of ZnO 

clusters at each existing Zn(OH) nucleus within the system. For one cycle of the 

latter process, we computed an energy gain of -113,5 kJ/mol per Zn (relative to the 

energies of gas-phase DEZ and H2O, including evolution of ethane), which is close to 

the energy gain upon cross-linking (-99,8 kJ/mol).  We therefore foresee that the 

final structure after repeated VPI cycles is likely to consist of a hybrid material 

composed of both nanoclusters of ceramic ZnO and covalently cross-linked Kevlar 

chains.  

 
Figure 3.2: a) Schematic of the proposed reaction pathways of Kevlar with DEZ and 

H2O resulting from the energetically most favoured DFT-calculated chemical 

interactions b) Structure of the cross-linked I-ZnO Kevlar oligomer computed with 

DFT. 

 

In order to corroborate the theoretically modelled structure, we performed 

XRD analysis of the samples. The XRD patterns of the samples are shown in Figure 

3.3. Two main diffraction peaks can be observed in the pristine Kevlar XRD pattern, 

at 20.6ºand 22.9º. These peaks correspond to the (110) and (200) crystal planes, 
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respectively, which are parallel to the axis of the polymeric chain118,119. The positions 

of the peaks and their full width at half maximum (FWHM) have been summarized 

in Table 3.1.  

 
Figure 3.3: XRD patterns of pristine Kevlar, ZnO-infiltrated Kevlar (I-ZnO) and ZnO-

coated Kevlar (C-ZnO) samples.   

 

In the case of the I-ZnO sample, due to the infiltration of ZnO into Kevlar, a 

shift of both peaks towards smaller angles was observed. This shift indicates that the 

planes parallel to the polymeric chain stretch, confirming the theoretically predicted 

intercalation of ZnO between the polymeric chains. However, in the coated samples 

a different behaviour of the diffraction peaks was observed. Only a small shift 

towards larger angles occurred, which likely resulted from compressive stress 

induced by the inorganic coating on top of the sample.  Besides, the FWHM of the 

coated sample increased, indicating a decrease of the crystallite size. The reduction 

of the crystallite size may arise from the scission of the superficial Kevlar chains 

resulting from the strong reactivity of the precursor and the heat evolution during 

the strongly exothermic reaction with water. The same effect should be observed in 

the I-ZnO samples, as the VPI process results not only in ZnO infiltration but also in 

a ZnO film on top of the sample. However, this effect is largely compensated 
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through cross-linking of the polymer chains with Zn in the case of the infiltrated 

sample.   

 

Table 3.1: Change of the position and FWHM of the XRD peaks. 

 
 

In order to seek more experimental verification of the computed structure, we 

measured ATR-FTIR spectra of the samples (Figure 3.4a). No significant differences 

were observed between C-ZnO and native Kevlar, indicating that no significant 

changes were induced in the chemical structure of Kevlar upon coating with ZnO. In 

the case of the I-ZnO sample, if the model of cross-linking the polymer chains with 

Zn holds true, the changes in the bonding structure upon infiltration with ZnO 

should be reflected in the FTIR spectra (Figure 3.4a). It should be noted that the mole 

fraction of the modified area of Kevlar after infiltration is very small and the signal 

of the unmodified Kevlar from the bulk of the fibres is overwhelming. Therefore the 

spectra will have significant contribution from unmodified Kevlar. Nevertheless, a 

shift was observed from most of the amide peaks, confirming that the infiltrated Zn 

interacts with the amide groups. The individual wavenumbers of these peaks are 

depicted in the Table 3.2 for easier comparison.  
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Figure 3.4: a) ATR-FTIR spectra of the various investigated samples. The peaks 

related to the amides are labelled; b) Magnification of the area showing the Amide II 

and III vibration peaks. 

 

Table 3.2: Position of the FTIR amide-related peaks.       
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The broadening (full width at half maximum (FWHM) increase by 6 cm-1) and 

red shift of the N-H stretching band after infiltration clearly show an interaction of 

the precursor with the amide. The theoretically predicted stretching of the C=O 

bond is reflected in the experimentally observed redshift of the Amide I peak (a 

signature of stretching of C=O). The Amide II and Amide III peaks show a clear 

deformation compared to the peaks of the untreated Kevlar (Figure 3.4b) in addition 

to the blue shift of Amide III. These peaks correspond to the coupling of two 

vibrational modes, N-H bending and the C-N stretching and are commonly used to 

determine the secondary structure of proteins 120–122, which can be applied to Kevlar 

in a similar way. The shift and shape change of the Amide II and III peaks must 

result from the change in the intermolecular interaction of the polymer chains and 

their spatial conformation, which is induced by the infiltration of ZnO into the 

polymer fibre. If further considering the red shift of Amide I and the blue shift of 

Amide III, which is dominated by the C-N stretching, this implies that a binding of 

Zn to the O in C=O will have a stabilizing effect on the C-N bond. In summary, the 

spectroscopic data is in agreement with the theoretically predicted cross-linked 

structure.  

Once the structure of the ZnO-Kevlar hybrid was determined, we analysed 

the effect of the hybridization on the thermal and UV stability of Kevlar.  

 

 
Figure 3.5: a) Thermogravimetric analyses showing the mass loss of each sample as a 

function of temperature, b) Derivative thermogravimetric plots showing the main 

degradation temperature of each sample. The temperature values of the C-ZnO 

sample correspond to the maxima of the deconvoluted peaks. 
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Regarding the thermal stability, as a result of the N-Zn-O bonding, an 

increase of the degradation temperature was expected. A more quantitative picture 

can be extracted from the thermogravimetric analysis (TGA) and differential 

thermogravimetry (DTG) measurements shown in Figure 3.5. Untreated Kevlar lost 

about 4% of the initial mass at 150ºC (corresponding to the processing temperature) 

and the decomposition of the polymer occurred at 567ºC, which is in good 

agreement with previous studies123. The mass loss at 150ºC of both ZnO-treated 

samples is similar and slightly lower than the loss observed from the untreated 

Kevlar. The main decomposition of these samples occurred at slightly higher 

temperatures (around 575ºC) than of the untreated samples. However, in the case of 

the C-ZnO sample a shoulder at 551ºC is observed, which is not seen in the I-ZnO 

sample. This shoulder indicates that an additional decomposition process starts 

prior to the main decomposition, which may follow a different degradation 

mechanism. A very likely scenario is that upon coating with ZnO the water 

molecules contained within the Kevlar fibres get trapped by the coating and cannot 

be released at 150ºC as it occurs with untreated Kevlar. An evidence for this can be 

seen from the TGA curves of the samples in the early stage of heating, between 50ºC 

and 150ºC, where the untreated Kevlar shows a continuous mass loss corresponding 

to the absorbed water molecules evaporation, while the ZnO treated samples do not. 

At higher temperatures the pressure of the water vapour will rise, causing the ZnO 

coating cracking, potentially hand in hand with a recrystallization of the ZnO. 

Indeed, in our earlier work we showed that temperatures of around 500ºC are 

sufficient to recrystallize ALD-deposited ZnO on polymeric fibres124. The high 

temperatures and the presence of released water molecules will cause the C-ZnO 

Kevlar to start decomposing already at 520ºC78,125. The FTIR spectra of the 

decomposition gases released at 520ºC, shown in Figure 3.6, support this scenario, as 

it can be observed that just the C-ZnO sample started to degrade at 520ºC.  This 

additional degradation step of the C-ZnO may be responsible for the final loss in 

mass of 6%. The presence of smaller molecular fragments that result from chain 

scission, as indicated by XRD, may contribute to the enhanced mass loss and earlier 

induction of the degradation in the coated sample.  
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Figure 3.6: FTIR spectra of the evolving gases upon decomposition at 520 ºC. In the 

case of untreated and I-ZnO samples, the absorbance is negative as no gases are 

released.  

 

In the I-ZnO fibres the delayed water molecule release was less expressed. 

The reason may be that a significant amount of water molecules within the Kevlar is 

consumed by the DEZ during the infiltration process, thus the degradation process 

occurs in a largely inert atmosphere. Therefore, it is confirmed that the infiltration 

and hybridization of Kevlar with ZnO enhances the thermal stability of the polymer. 

As mentioned in section 1.4 of this thesis, exposing Kevlar to high 

temperatures for long periods of time has an enormous impact on its mechanical 

properties. In order to verify whether or not the observed increase in thermal 

stability of I-ZnO Kevlar is also reflected in its mechanical properties, we performed 

tensile tests. From the obtained stress-strain curves, we calculated the toughness 

modulus (area under the strain-stress curve) of the samples, which are summarized 

in Figure 3.7. As a reference, an untreated Kevlar sample was maintained at 150 ºC 

for 7h, which should simulate the environmental conditions the fibres experience 

during the coating or infiltration processes. As expected, this thermal treatment had 

a large impact in the toughness modulus of Kevlar, as only 75% of the initial 

modulus was retained after 7h. Similar results were obtained with the C-ZnO 
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sample, indicating that the ZnO layer on top of the fibres was not sufficient to avoid 

thermal degradation. However, the infiltrated sample retained 91% of the initial 

modulus, confirming its enhanced thermal stability as observed in the TGA 

measurements.  

After assessing the benefit of the infiltration on the thermal sensitivity, we 

analysed the UV sensitivity of the samples. We exposed the fibres to UV light for 24h 

and performed the tensile tests. A comparison of the modulus of toughness before 

and after exposure to UV light (Figure 3.7) showed the high sensitivity of Kevlar to 

such irradiation.  

 

 
Figure 3.7: Modulus of toughness of the various processed samples before and after 

UV irradiation. 

 

The modulus of toughness of both untreated and heated Kevlar decreased by 

nearly 50%. The destructive effect of UV light on the mechanical properties is a 

direct consequence of molecular decomposition reactions that take place on the 

fibres’ surfaces 80,103,126. The UV light induces hydrogen bond cleavage, chain scission 

and oxidation of terminal groups of the polymer. Those primarily affect the amide 

groups and lead to a degradation of the superficial hydrogen bonds, resulting in 
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surface etching. This effect may be enhanced if elevated temperatures are combined 

with UV irradiation. The superficial degradation reactions can be observed from the 

FTIR spectra of the Kevlar samples before and after the irradiation. Even though no 

evolution of a new peak was observed after irradiation, the intensity of the amide-

related peaks changed significantly. For a clearer comparison, the spectra were 

normalized and the change on the intensities has been summarized in Table 3.3.  

 

Table 3.3: Change of the intensities of the amide-related peaks after UV irradiation.  

 
 

The reduction of the intensity of the N-H stretching and Amide III bands, 

together with the increased intensity of the Amide I and II bands, as observed in the 

untreated Kevlar, arise from the cleavage of H-bonds between adjacent chains and a 

homolytic splitting of C-N and N-H bonds80,125,127. The heated Kevlar sample showed 

the same tendency but the change in the intensities, especially of the N-H stretching 

peak, was considerably larger. In this case, the UV-induced H-bond cleavage and 

chain scission reactions were combined with a thermally induced H-bond cleavage.  

This was in good agreement with the tensile tests where the modulus of toughness 

of heated Kevlar after UV irradiation was even lower than in the case of untreated 

Kevlar.  

In the case of C-ZnO fibres, an even stronger loss of the modulus of around 

65% was observed (Figure 3.7), indicating that the degradation reactions were 

further enhanced by the ZnO coating. ZnO is known to strongly absorb UV light. 

The coating was therefore expected to shield the fibres from UV light and prevent 

radiation-induced degradation. However, for a quantitative UV blocking a film of 

around 100 nm thickness is typically needed86,128. Since our films had only 

approximately half of that thickness, the UV blocking of the ZnO coating is not 

expected to be efficient. Furthermore, under UV illumination and in presence of 
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water molecules, the ZnO coating acted as a photocatalyst, creating oxygen-

containing radicals that can attack the polymeric backbone. Such photocatalytic side 

reaction will rapidly degrade the polymer in the vicinity of the metal oxide and in 

this way lower the modulus of toughness. In fact, we observed the most significant 

loss in the modulus of toughness from coated samples after UV irradiation. The 

different degradation mechanism of the C-ZnO sample was also expressed in the 

FTIR spectra (Table 3.2). Unlike pristine and heated Kevlar, where the changes in the 

N-H peak are most dominant, in this case the biggest change occurs in the Amide I 

peak. The increased intensity of the C=O stretching peak (Amide I) is accompanied 

by a shift towards higher wavenumbers as a consequence of the oxidation of the 

amide groups.   

In contrast, the infiltration with ZnO effectively suppressed UV induced 

degradation; the I-ZnO fibres retained 90% of the initial modulus of toughness 

(Figure 3.7). The UV protection is also reflected in the FTIR spectrum (Table 3.2), as 

almost no change in the intensities of the amide-related peaks was observed. This 

stabilization may be explained as follows. On the one hand chain-scission reactions 

become less probable in the case of polymer chains that are cross-linked and 

stabilized with Zn. Especially with the Zn binding to amide groups, those will 

experience chemical stabilization and potentially shield the amide bonds from 

reactive molecules. On the other hand the infiltrated ZnO is buried in the subsurface 

area of the fibre without contact to water molecules, thus suppressing radical 

formation as source for the UV-induced photocatalytic degradation observed in the 

C-ZnO sample. Most likely both effects played a partial role here and apply 

simultaneously. 

3.4.- Conclusions 

The stability of Kevlar fibres against thermal and UV irradiation-induced 

degradation has been significantly improved through vapour phase infiltration of 

Kevlar with ZnO. As a consequence of the infiltration, a hybrid organic-inorganic 

material of around 30 nm thickness is created in the subsurface area of the Kevlar 

fibres. The structure of the hybrid material, which is determined by theoretical 

models calculated with DFT, consists of infiltrated ZnO, which is covalently cross-
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linking Kevlar chains and further growing inside the polymeric matrix. The shift in 

the vibration peaks of the amide groups observed in the FTIR spectrum indicates 

that the infiltrated ZnO reacts with the amide group, which is in agreement with the 

theoretical model. Thanks to the creation of the hybrid material the decomposition 

temperature of Kevlar is increased by nearly 10ºC and 90% of its modulus of 

toughness is retained even after 24h of UV irradiation, outperforming the stability of 

Kevlar as known by now. Thus, this new route offers the possibility to improve the 

stability of such high-strength polymers without markedly compromising their 

characteristic lightness. In addition, this vapour phase technique avoids the post 

processing treatments that are commonly required after use of organic solvents.  
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Chapter 4 

Combined ALD/VPI process for multiscale functionalization 

of Kevlar 

 

 

In this chapter, a newly developed combined ALD/VPI process is described, 

which is used for simultaneous toughening and UV protection of Kevlar fibres. This 

new combined process allows simultaneous coating of Kevlar fibres with Al2O3 and 

infiltration with ZnO within the same run. As elaborated in the previous chapter, the 

Kevlar-ZnO hybrid material synthetized in the subsurface area of the fibres 

suppresses the UV sensitivity of the polymer. The evolution of this process towards 

additional coating with Al2O3 enhances the modulus of toughness of the fibres by 

10%, eventually resulting in reinforced and UV resistant Kevlar fibres, as described 

in more detail in this chapter.  
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4.1.- Introduction 

In the previous chapter, we demonstrated that the thermal and UV sensitivity 

of Kevlar can be suppressed by infiltration of ZnO through a modification of ALD, 

namely, Vapour Phase Infiltration (VPI). Apart from the desired infiltration, the VPI 

of ZnO into Kevlar also resulted in unavoidable coating of the polymer with ZnO. 

However, we found that this ZnO coating had a negative impact on the stability of 

the fibres and only 90% of the modulus of toughness was retained in this way. 

Therefore, if the ZnO coating could be suppressed or substituted with a non-

photocatalytic material, the performance of the ZnO infiltrated Kevlar fibres might 

be improved.  

The development of a process for polymeric fibres to be infiltrated with a 

metal oxide and coated with another metal oxide in a single vapour phase 

processing step is very challenging. However, such combination of two different 

metal oxides infiltrating/coating the polymeric substrate could lead to a rapid and 

simple synthesis of multifunctional polymers, which could include functionalities 

that are difficult to obtain in other ways.    

In this chapter, we demonstrate a new process, which integrates both coating 

and infiltration with two different materials. Through this combination of ALD/VPI 

Kevlar fibres are coated with Al2O3 and infiltrated with ZnO within the same 

process. The mechanical properties and UV stability of these fibres are studied and 

compared to Al2O3-coated and infiltrated fibres. Thanks to this new strategy, 

Kevlar´s modulus of toughness is increased by 10% and its sensitivity to UV-induced 

degradation is completely eliminated at the same time. 

 

4.2.- Experimental 

4.2.1.-Sample preparation 

Kevlar fibres were obtained from the woven commercially used in bulletproof 

vests (Kevlar 29). The fibres had diameters of 10 µm and were cut to lengths of 3 cm 

for the experiments.  
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All modifications of the samples were performed in a commercial ALD 

reactor (Savannah S100, Cambridge NanoTech Inc). Both infiltration and coating of 

the fibres were carried out at 150ºC under a constant nitrogen gas flow of 20 

standard cubic centimetres per minute (sccm). Trimethylaluminum (TMA, Al(CH3)3, 

Strem Chemicals) was used as the aluminium source, Diethylzinc (DEZ, Zn(C2H5)2, 

Strem chemicals) was used as zinc source, and demineralized water as the oxygen 

source. The coated fibres were prepared following a typical ALD process with a 

cycle consisting of Pulse(TMA, 0.08s)/Purge(N2, 30s)/ Pulse(H2O, 0.08s)/Purge(N2, 

30s). In contrast, the infiltrated fibres were prepared by VPI. Here, the substrate was 

exposed to the precursors for defined periods of time before purging, thereby 

allowing diffusion of the precursors into the polymer. A VPI cycle consisted of 

Pulse(TMA, 0.08s)/ Exposure(30s)/ Purge(N2, 30s)/ Pulse(H2O, 0.08s)/ 

Exposure(30s)/ Purge(N2, 30s).  Finally, for the preparation of the sample coated 

with alumina and infiltrated with ZnO a combination of ALD and VPI was used. 

Each cycle consisted of Pulse(TMA, 0.08s)/ Purge(N2, 30s)/ Pulse(DEZ, 0.08s)/ 

Exposure(30s)/ Purge(N2, 30s)/ Pulse(H2O, 0.08s)/ Exposure(30s)/ Purge(N2, 30s). 

In all cases, the number of repetitive ALD/VPI cycles was 200. 

4.2.2.- Characterization 

TEM characterization and EDS analysis were carried out with a FEI Titan 

microscope using 300 kV in STEM mode and an EDAX SDD detector. 

The FTIR spectra of the samples were acquired with a Perkin Elmer Frontier 

spectrometer with an ATR sampling stage. All spectra were measured collecting 20 

scans in the range from 520 to 4000 cm-1 with 1 cm-1 resolution. Each sample was 

measured 5 times and the results were averaged.  

The XRD patterns of the samples were measured with a PANalytical X’Pert 

Pro diffractometer with Cu-Kα radiation. For an easier measurement, woven fabric 

Kevlar pieces were analysed, instead of individual fibres. 

The tensile tests were done with a BRUKER Universal Mechanical Tester with 

a resolution of 50 µN and in accordance to the ASTM standard C1557-03 (2008). To 

determine the stability of the fibres under UV light the samples were exposed to 
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light with a wavelength of 365 nm for 24 hours. Subsequently the strain-stress curves 

were measured and compared with the mechanical properties of unexposed fibres. 

The morphology of the fibres after the tensile tests was analysed by SEM. The 

SEM micrographs were taken in an environmental scanning electron microscope 

Quanta 250 FEG with a large field detector (LFD). The ruptured fibres were glued to 

a carbon tape and the images were taken at 10 kV and 70 Pa. 

 

4.3.- Results and discussion 

In order to analyse the structure of the samples resulting from the different 

processes, we analysed their cross-sectioned areas with TEM (Figure 4.1). Alumina-

coated Kevlar fibres (C-Al2O3) had a sharp and clear interface between the Al2O3 thin 

film and the polymeric core (Figure 4.1a). Similarly, an alumina thin film was grown 

on the surface of the alumina infiltrated (I-Al2O3) sample. However, in this case the 

TMA additionally diffused into the polymer and formed a second, less dense Al2O3 

layer in the subsurface area of the polymer (Figure 4.1b). The sample prepared by 

the combined ALD/VPI process (TMA pulse) showed a more intriguing 

construction. Here, two different metal oxides were present, Al2O3 as a thin film on 

the surface of the fibre and ZnO as the inorganic component of the hybrid material 

created in the subsurface area of the polymer (Figure 4.1c and 4.1d). This special 

stack was achieved by the combination of ALD and VPI in a novel single-stage 

process. Namely, the process starts with an ALD-type pulse of TMA, that is, a short 

pulse of the precursor without allowing exposure time, which is followed by a purge 

step. In this stage, the TMA covalently binds to the surface of the fibre but is not 

hydrolysed yet. It acts as inhibitor for the adsorption of the next precursor by 

occupying functional sites at the polymer surface. In the next step of the process a 

VPI-type of pulse of DEZ is applied, which includes exposure of the sample to DEZ 

for an extended time period. As the superficial functional groups are saturated with 

TMA, the DEZ diffuses into the fibre and reacts with the functional groups in the 

subsurface area of the polymer. The process is finished by a VPI pulse of water 

vapour, which reacts with both the anchored TMA and infiltrated DEZ. Upon 

reaction of water with TMA on the polymer surface, an Al2O3 coating is created, 
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while the reaction with DEZ in the subsurface area forms a Kevlar-ZnO hybrid. The 

structure of this hybrid consists of ZnO clusters that covalently cross-link Kevlar 

chains through N-Zn-O bonds, as studied in the previous chapter of this thesis.  

 

 

 
Figure 4.1: TEM images of FIB-prepared cross-sections of A) alumina-coated Kevlar 

(C-Al2O3), B) alumina-infiltrated Kevlar (I-Al2O3), and C) Kevlar coated with 

alumina and infiltrated with ZnO (TMA pulse). d) EDS colour map of the TMA 

pulse sample.  

 

The chemical changes induced by the coating and infiltration processes were 

analysed by ATR-FTIR. The most pronounced differences among the characterised 

samples were seen in the fingerprint area of the FTIR spectra, specifically in the 

region between 950 and 1000 cm-1 (Figure 4.2a), where stretching signatures of C-N, 

C-O and C-C bonds are found. A peak at 940 cm-1 in the spectra of the C-Al2O3 and I-

Al2O3 samples indicated the development of C-O single bonds, which was a result of 

the binding of the Lewis acid TMA to the oxygen of the C=O bond in the amide. An 
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additional peak developed around 960 cm-1, which can be assigned to C-C 

stretching, a result of newly developing C-C bonds. The intensity of that peak in the 

TMA pulse sample was low, likely showing a moderate level of chemical 

modification, while it is higher in the two Al2O3-coated and infiltrated samples. This 

new C-C bond results from the nucleophilic attack of the released methyl ligand of 

TMA on the carbonyl C of the C=O group in the amide.  Such an attack will result in 

the splitting of the C-N bond in the amide in parallel to the formation of the C-C 

bond (Figure 4.2b). The native Kevlar and the TMA pulse sample showed a 

pronounced peak at 980 cm-1, a signature of the C-N bond, while this peak nearly 

vanished in the C-Al2O3 and I-Al2O3 samples. Therefore, it can be assumed that the 

alumina-treated samples are more strongly degrading the polymer chains.  

 
Figure 4.2: A) Fingerprint area (1200-800 cm-1) of the ATR-FTIR spectra of Kevlar 

fibres before and after coating and infiltration. B) Schematic view of the proposed 

reaction mechanism between Kevlar and TMA, based on the FTIR data.  

 

The spectra at higher wavenumbers added further information. Shifts in the 

amide peaks confirmed that the infiltrated precursors interacted with the amide 

groups. The individual wavenumbers of these peaks are depicted in Table 4.1 for 

easier comparison.  
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Table 4.1: Position of the FTIR amide related peaks 

 
Kevlar C-Al2O3 I-Al2O3 TMA pulse 

N-H st 3310 3310 3308 3306 
Amide I 1641 1642 1638 1639 
Amide II 1539 1538 1540 1538 

Amide III 1249 1251 1250 1251 
1222 1221 1224 1227 

 

While the alumina coating (C-Al2O3) did not significantly alter the spectral 

signature of Kevlar, the other two samples showed chemical changes to the 

substrate. On the one hand both samples affect the N-H and C=O (Amide I) bonds, 

which constitute the hydrogen bonds between the polymer chains. However, the 

ZnO infiltration (TMA pulse sample) had a stronger impact on the N-H bonds than 

the Al2O3 infiltration (I-Al2O3 sample), while with the Amide I, the situation was 

reverse. This is in-line with the observations from the fingerprint area where Al was 

more efficiently binding to C=O than Zn, which on the other hand has a stronger 

impact on N-H than Al42. The blue-shifts of the Amide II and Amide III peaks 

indicate that both metals also interacted with the nitrogen, as those peaks are related 

to the C-N bond stretching. The shift was more strongly expressed after infiltration 

of ZnO, indicating once more stronger bonding of Zn to the N and a resulting 

alteration of the C-N bonding strength. Upon infiltration of Al2O3, the Al will more 

easily attack the carbonyl group and bind to the oxygen, converting the double bond 

into a single bond. The methyl group released from the TMA precursor upon 

binding of Al to O is a strong nucleophile and will likely bind to the carbonyl C. As a 

result, the C-N bonds will become cleaved. The shifts further indicate that covalent 

cross-linking of the Kevlar chains is more pronounced in the TMA pulse sample.  
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Figure 4.3: XRD diffraction patterns of the samples. 

 

The crystallographic features of the samples by X-Ray diffraction (Figure 4.3) 

additionally confirmed the cross-linking ability of the infiltrated ZnO. Namely, the 

peaks indexed as [110] and [200] reflections of Kevlar shift to slightly lower angles 

after infiltration with ZnO, indicative of an increase of the interchain distance, likely 

resulting from insertion of ZnO into the material, thereby cross-linking the polymer 

chains. The shift of the [211] reflection points towards a decrease of the stacking 

density of the crystallites. In contrast, the C-Al2O3 showed no alteration of the 

interchain spacing, but only a decrease in the stacking density. The I-Al2O3 sample 

showed in both aspects opposite behaviour, namely a decrease of the interchain 

spacing and an increase in the packing density, which presumably results from the 

molecular distortion upon chain scission and re-packing of the molecules within the 

fibres.  

In order to measure the impact of the different treatments on the mechanical 

properties of the fibres, we performed tensile tests and calculated the modulus of 

toughness. From Figure 4.4a it becomes obvious that in the first instance all 

processed samples showed an increase in the modulus of toughness as compared to 

native Kevlar. This effect can be ascribed to the alumina film created on top of each 

sample upon coating or infiltration. The inorganic coating stiffens the polymeric 
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fibre, which consequently increases the Young´s modulus and the Ultimate Tensile 

Strength (UTS), resulting in an increased modulus of toughness. However, the 

stress-strain curves in Figure 4.4b show that the three treated samples performed 

differently. In the case of C-Al2O3, the modulus of toughness increased by 13%, but 

the failure strain was significantly reduced in comparison to native Kevlar. In 

contrast, the infiltration of Kevlar with Al2O3 (I-Al2O3) showed a somewhat different 

behaviour. The unavoidable alumina coating created during the infiltration process 

implies a similarity to the corresponding coated fibre. However, the strain-stress 

curve of this sample was similar to that of untreated Kevlar and the increase in the 

modulus of toughness was only 5%. One may expect that the formation of a hybrid 

phase of Al2O3 and Kevlar in the subsurface area may further improve the 

mechanical properties of the fibre. However, given earlier evidence by the Parsons 

group129,130 and our cross-sectional TEM investigations (Figure 4.1b), the precursor 

TMA, being a strong Lewis acid, is able to degrade the polymer and consequently 

form a porous Al2O3 film at the interface of the coating and the bulk polymer. This 

porous film is likely an initially infiltrated and subsequently degraded part of the 

subsurface area of Kevlar. This spongy structure is more flexible than dense Al2O3, 

thus the I-Al2O3 sample dominantly reflects the characteristic high rupture strain of 

the Kevlar. However, no improvement in the Young´s Modulus or UTS in 

comparison to the coated sample is observed, indicating that the alumina film is not 

tightly bound to the polymeric fibre.  

The greatest improvement was observed from the TMA pulse sample, where 

the Toughness Modulus increased by 17%. This improvement results from the 

increase of the Young´s Modulus and UTS and a higher failure strain. The sample 

consisted of ZnO infiltrated into the subsurface area of Kevlar and an additional 

coating with Al2O3. The greatly increased mechanical properties of this sample 

indicate that the Kevlar-ZnO hybrid acts as an ideal interface. It strongly binds the 

alumina film with the polymeric substrate and, at the same time, it is flexible enough 

to compensate the stress occurring from the differences in flexibility between the 

brittle inorganic coating and the flexible polymer.   
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Figure 4.4: a) Modulus of toughness before and after irradiation with UV light, and 

b) Stress-strain curves before and after irradiation with UV light. 

 

The mechanical properties of the coated and infiltrated samples were further 

analysed after exposing the fibres to UV light for 24 hours. From Figure 4.4a, we 

observed that the untreated Kevlar maintained only 45% of its modulus of toughness 

after exposure to UV light. The I-Al2O3 and C-Al2O3 samples showed higher UV 

resistance, maintaining 65% of their modulus of toughness. However, the UV light 

still had a significant impact on those fibres. The TMA pulse sample, however, 

showed significant improvement in resistance against UV light. In fact, a complete 

suppression of the UV sensitivity was observed with 100% of the Toughness 

Modulus being maintained even after exposure to UV light. The possibility to lower 

UV-induced degradation of Kevlar by infiltration with ZnO was already 

demonstrated in the previous chapter. The difference to the current sample is that in 

the previous approach the overall modulus of toughness of Kevlar was not 

improved, but merely the loss minimized. In contrast to those earlier investigated 

samples, the TMA pulse Kevlar fibres consist of infiltrated ZnO and an additional 

coating of Al2O3, which was achieved with a conceptually new synchronized 

coating-infiltration strategy. Advantage has been taken from the added value of two 
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materials, namely the infiltrated ZnO being an excellent UV-light absorber and the 

Al2O3 coating enhancing the modulus of toughness.  

Important information about the mechanical performance of a material can be 

extracted from the analysis of the fracture area. Figure 4.5 shows that the failure of 

Kevlar fibres is mainly caused by fibrillation and splitting along the fibre axis131,132. 

The rupture of the fibre starts at an imperfection on the surface. The longitudinal 

shear stresses, induced at the initial imperfection, cause longitudinal splitting of the 

first bundle of fibrils. The tensile modulus and strength are much higher than the 

shear modulus and strength, resulting in the crack developing under a steep angle. 

The break is further transmitted from one fibrillar unit to another until the filament 

fails completely 133. The fracture area of the UV-irradiated sample, in contrast, 

showed negligible fibrillation. This fracture mode is characteristic of brittle materials 

and is explained by UV induced polymer chain scission reactions resulting in 

weakening of the tensile modulus and strength of the fibre. Thus, the initial crack 

develops perpendicular to the fibre axis until complete failure of the filament.  

 
Figure 4.5: SEM images of the broken ends of native, coated and infiltrated Kevlar 

samples after irradiation with UV light in comparison to Kevlar before irradiation.  

 

The same fracture mode was observed from the C-Al2O3 and I-Al2O3 Kevlar 

samples after UV exposure, indicating that the Al2O3 coating does not prevent UV-
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induced chain-scission reactions. In agreement with the analysis of the mechanical 

properties, the alumina infiltration obviously did not prevent the UV-induced 

degradation of Kevlar, thus the fibre showed the earlier mentioned brittle fracture 

mode. In contrast, the TMA pulse sample showed the fibrillar type of fracture 

characteristic as seen from native Kevlar after exposure to UV light. The longitudinal 

splitting and the fibrillation show that the combination of alumina coating and ZnO 

infiltration did not significantly embrittle the fibre.  

 

Table 4.2: Change in the intensities of the amide-related peaks after UV irradiation 

 
Intensity variation after UV irradiation (%) 

 
N-H st Amide I Amide II Amide III 

Kevlar -7 2 2 -3 

C-Al2O3 -4 3 1 -3 

I-Al2O3 -5 0 -1 -4 
TMA pulse -1 0 1 0 

 

To understand how the structure of different samples is affected by UV light, 

FTIR spectra of the samples were measured after UV irradiation. No significant 

changes were noted in the shifts of the peaks, but rather in the intensities. In Table 

4.2 the intensities of the peaks of the irradiated samples were normalized and 

compared to those of the non-irradiated samples. Considering the measured 

mechanical properties, the UV light had the strongest impact on untreated Kevlar. 

The reduction of the intensity of the N-H stretching and Amide III bands, together 

with the increased intensity of the Amide I and II bands, indicate the cleavage of H-

bonds between adjacent chains and a homolytic splitting of C-N and N-H 

bonds80,125,127. The degradation was to some extent suppressed upon coating or 

infiltration with Al2O3. The I-Al2O3 samples were less sensitive to UV light than 

native Kevlar, which can be attributed to a parallel occurrence of chain scission and 

cross-linking of the polymer. However, the cross-linking did not completely 

compensate the effect of the chain-scission upon exposure to UV light. In the C-

Al2O3 samples, the polymer did not undergo serious alteration during the coating 

process and the metal oxide aims at absorbing the UV irradiation and protecting the 
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Kevlar fibres. However, a 25 nm thick alumina film deposited on top of the fibres is 

not sufficient to completely screen the UV radiation. Thus, the C-Al2O3 and the I-

Al2O3 samples showed similar changes in the FTIR spectra after UV irradiation. The 

TMA pulse sample showed only negligible changes in the FTIR spectrum after UV 

irradiation, which was also reflected in the mechanical properties.  On the one hand 

chain-scission reactions become less probable due to the high cross-linking level 

obtained by infiltrating ZnO, on the other hand the ZnO clusters buried inside the 

fibre will absorb UV light, thus preventing it from reaching the polymeric core.  

4.4. Conclusions 

VPI or ALD can individually positively affect the mechanical properties of 

Kevlar. In this chapter we have shown the first approach to combine ALD and VPI 

into one hybrid process, which deposits Al2O3 as thin film onto the polymer, while at 

the same time infiltrates ZnO into the polymer. In this way, a hybrid polymer-

inorganic material with a binary inorganic fraction is created. The benefit of this 

approach is that the Al2O3 thin film, deposited by ALD, enhances the modulus of 

toughness of the polymeric fibres, even exceeding the well-known extraordinary 

values of native Kevlar. Simultaneously, the sensitivity of the fibres to UV-light 

induced degradation is eliminated thanks to the hybridization of the polymer with 

ZnO. The hybrid coating-infiltration process is integrated and performed in a 

synchronous way and does not require any further specific adaptation of the ALD or 

VPI setup. Extension of this strategy to further precursor and substrate combinations 

gives rise to an optimistic view on exciting new developments in materials research 

and consequently applications with greatly performing new materials.   
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Chapter 5 

 

Development and characterization of a Kevlar-ZnO hybrid 

conductive photocatalyst 

 

5.1.- Introduction 

Flexible electronics define one key area of future technological devices. Here, 

functional polymers play an important role as the combination of low weight and 

mechanical flexibility makes polymers unavoidable within this technological 

concept. However, the electronic properties of polymers need to match the 

technological needs. Therefore, the past decades witnessed significant effort in 

synthesizing and optimizing organic conducting polymers (OCPs), such as doped π-

conjugated polymers (polypyrrole, polyaniline, etc.). Current ideas for fabricating 

flexible electronic devices may be broken down into two major groups; printing 

devices on top of flexible polymer foils or functionalizing polymeric fibres. The 

second approach is lately gaining importance, as efficient and established industrial 

processes for producing large amounts of polymer fibres, as well as procedures for 

assembling those into textile, are available. This is a rather new research field and 

most of the approaches for functionalization of polymeric fibres relate to mechanical 

properties or blocking of UV light as explained in previous chapters. Integrating 

further physical properties into the fibres is of great desire but such approaches are 

still in their infancy with plenty of space for improvement. 

An integration of electrical conductivity to top up the characteristic lightness, 

flexibility and good processability of Kevlar would make these fibres ideal 

candidates for fibre-based electronics. A variety of pathways for reaching this goal 

have been studied, including coating of Kevlar with metals93,134,135, metal oxides136 or 

other polymers90,137–139. However, those approaches negatively impact the chemical 

and thermal stability or reduce the flexibility of the fibres. Strategies to maximize 
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both stability and electrical features of Kevlar fibres include coatings with metallic 

nanoparticles dispersed in a polymeric matrix88,89 or with carbon nanotubes92. Such 

approaches appear promising in principle, but for enhanced durability the adhesion 

of the coating to the fibres requires optimization of the chemistry of the coating 

formulation, thus limiting the variation bandwidth and the potential applications. 

Furthermore, the amount of nanoparticles required to achieve good electrical 

conductivity is very high, which compromises the mechanical properties and 

seriously limits the up-scaling possibilities.   

A fruitful strategy to induce conductivity in insulating polymer fibres may be 

based on vapour phase infiltration with a conducting material. As presented by 

Wang et al.70,71, VPI offers the possibility to dope conducting polymers in a solvent 

free post-processing route thanks to the infiltration of Lewis acids. However, it 

appears logical that this innovative doping route will only work on polymers with 

conjugated π-electron systems, similarly to traditional doping strategies. A variation 

of this doping strategy was also presented by the same group72, where unexpectedly 

high conductivity values were obtained through VPI of a metal oxide into a 

conducting polymer. They found that, apart from the intended polymer doping by 

the metal oxide, the nitrogen from the polymer acted as a dopant for the metal oxide. 

This discovery implies a radical change in the view of electrical functionalization of 

polymers as, contrary to previous strategies, it could be used to add conductivity 

also to insulating polymers.  

Apart from flexible devices, polymeric fibres and textiles have been 

traditionally used as substrate for multicomponent catalytic systems140–142 due to 

their characteristic flexibility and lightness. However, thanks to the development of 

OCPs and the study of their photocatalytic activity143, polymers are currently used in 

photocatalytic applications not as supporting material but also as the active 

photocatalyst. With the sunlight being the best natural light source, photocatalysts 

that operate with visible light are especially interesting. However, still most of the 

studied polymeric photocatalysts only work under UV radiation.  

In the present work, we demonstrate the possibility to induce electrical 

conductivity into insulating Kevlar fibres by VPI of ZnO. The polymeric fibres 

infiltrated with ZnO show higher conductivity values compared to ZnO-coated 
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fibres and the values are stable even after bending the fibres. Besides, the 

conductivity can be tuned by controlling some processing parameters, such as the 

number of VPI cycles or the exposure time. The created ZnO-Kevlar hybrid material 

is not only electrically conducting but it also presents photocatalytic activity when 

exposed to visible light.  

 

5.2.- Experimental 

5.5.1.- Sample preparation 

Individual fibres (for electrical characterization) and cut pieces of woven 

fabric (2 cm x 2 cm, for photocatalytic characterization) of Kevlar 29 were infiltrated 

with ZnO through VPI. The VPI processes were performed in a Savannah 100 

(Cambridge Nanotech) ALD reactor. Diethyl zinc (DEZ, Strem chemicals) and 

purified water were used as zinc and oxygen sources, respectively. One cycle of the 

process consisted of: DEZ pulse for 0,08 s, followed by exposure of the substrate to 

the DEZ between 30 and 300 s, and purging with N2 for 30 s, water pulse for 0,08 s, 

30 s of each exposure and purging times. The cycle was repeated between 50 and 300 

times. The precursors were kept at room temperature and the chamber temperature 

was 150 ºC.  

ALD coated samples were prepared as reference for the VPI-infiltrated 

samples. The preparation of the coated samples was done using the same 

parameters as in VPI, but omitting exposure times after precursor pulsing.  

Individual fibres of Kevlar 29 were infiltrated with In2O3 through VPI. The 

VPI processes were performed in a Savannah 100 (Cambridge Nanotech) ALD 

reactor. Trimethyl indium (TMI, Strem chemicals) and purified water were used as 

indium and oxygen sources, respectively. One cycle of the process consisted of: TMI 

pulse for 0,1 s, followed by exposure of the substrate to the TMI between 10 and 90 s, 

and purging with N2 for 30 s, water pulse for 0,08 s, 30 s of each exposure and 

purging times. The cycle was repeated between 50 and 300 times. The precursors 

were kept at room temperature and the chamber temperature was 200 ºC.  
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5.2.2.- Computational simulations 

The computational calculations were carried out with the Perdew–Burke–

Ernzerhof (PBE) exchange-correlation functional109 and the SV(P) (double zeta 

valence basis set with polarization at all non-hydrogen atoms) basis set as 

implemented in TURBOMOLE110 with the RI approximation for Coulomb 

integrals111 accompanied by the corresponding auxiliary basis sets112. The ‘‘m4’’ 

integration grid of the module RIDFT was used113,114. Geometries were freely 

optimized using redundant internal coordinates115 until gradients were < 10-6 

Hartree. Optimized structures were visualised with Materials Studio suite version 

7.0. This theoretical part of the work was performed by the group of Dr. Simon 

Elliott at the Tyndall national institute in Cork, Ireland.  

5.2.3.- Spectroscopic analysis 

The UV/Vis absorption spectra of the samples were recorded between 310-

620 nm using a UV-Vis spectrophotometer (V-630 BIO, JASCO). 

The nano-FTIR spectra were measured with a commercial nano-FTIR 

spectroscopy setup (Neaspec GmbH). The AFM was operated in dynamic mode, 

using a standard Au-coated tip (PPP_NCST Au, Nanosensors), vertically vibrating at 

the cantilever resonance frequency (Ω ≈ 150 kHz) with an amplitude around 60 nm. 

In order to isolate the signal due to the near-field interaction and suppress 

background contribution, the scattered signal was demodulated at the third 

harmonic of the tapping frequency, 3Ω. The mid IR broadband light was provided 

by a laser supercontinuum, which was tuned to emit a continuous spectrum 

between 1250 and 1800 cm-1, with an integrated output power of approximately 0.5 

mW. The AFM tip was located in one of the arms of a Michelson interferometer, so 

that the demodulated signal I3 was recorded as a function of the reference mirror 

position d. The asymmetric spectrometer design allowed for both interferogram I3(d) 

amplitude and phase recording. I3(d) was then apodized using a three-term 

Blackman window and Fourier transformed, yielding to the complex spectrum 

E3(ω)=s3(ω)eiϕ3(ω). The nano-FTIR spectrum of each point was the average of 5 

individual spectra, with a resolution of 8 cm-1. The total acquisition time was 8 

minutes for each point.  In order to normalize spectra, a clean gold surface spectrum 

E3,ref(ω)=s3,ref(ω)eiϕ3,ref(ω)  was recorded with the same resolution and acquisition time. 
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The referenced spectra, presented in the main text, are the result of the complex 

normalization a3(ω)= s3(ω)/s3,ref(ω)sin(ϕ3- ϕ3,ref). Ultramicrotome cuts for nano-FTIR 

analysis were done using a Leica UC6 ultramicrotome with a Diatome AFM 

diamond knife.  The block face was prepared by taking final cuts at a thickness of 50 

nm. The nano-FTIR measurements in this work were performed by Marta Autore 

from the Nanooptics group at CIC nanoGUNE.  

5.2.4- Electrical resistance measurements 

Electrical resistance (R) is a measure of an electrical current flow through a 

material. In general, the resistance of a material can be calculated based on Ohm´s 

law: ! = !.!; where V is the voltage, I is the current and R the resistance. For 

measuring, a simple two-point resistance measurement can be performed, which 

consists of applying a current between the two electrodes and measuring the 

potential difference between them. This method acquires the total resistance of the 

circuit, including the contact resistance between sample and electrode, and therefore 

is used to characterize semiconductors or materials with a high resistance. In such 

cases, the contact resistance is negligible compared to the material´s resistance and 

the measured value mainly reflects the resistance of the material. 

The electrical resistance measurements in this thesis were done using the two-

point method and in a voltage range between -2 V and 2 V with a KEITHLEY 

Semiconductor Characterization System 4200-SCS at room temperature and 

atmospheric pressure. For the measurements, ten individual fibres of each sample 

were fixed to a Kapton tape. As contacts, stripes of silver paint were applied 

perpendicular to the fibres with a distance of 2 mm between the stripes. With several 

equidistant stripes, different sections of the fibres could be measured and values of 

the different sections of the fibres and the 10 used identical fibres could be averaged. 

For the characterization of the photocurrent the samples were kept in dark 

environment overnight. Then, the samples were illuminated with a 150 W halogen 

lamp, a voltage of 10 V was applied, and the generated current measured. 

5.2.5.- Photocatalytic activity study 

A catalyst is a substance that increases the rate of a chemical reaction by 

changing the reaction mechanism, but still leading to the same reaction product. In 
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presence of a catalyst the energy to reach the transition state of a reaction is reduced, 

allowing a more rapid chemical conversion. Typically, the catalyst reacts with the 

substrate forming a temporary intermediate product, which then reacts further and 

regenerates the initial catalyst in a repeated manner. Therefore, only little amount of 

a catalyst is needed, as it is not consumed during the reaction.  

Catalysts are usually classified based on their phase: a homogeneous catalyst 

is in the same phase as the reactant, also called substrate, (usually gas or liquid 

phase) while a heterogeneous catalyst is in a different phase than the substrate 

(usually gaseous or liquid reactant adsorbed on a solid catalyst).  

Generally, for the catalytic reaction to occur simply the presence of the 

catalyst is needed. However in some cases, the catalyst needs to be excited to create 

the intermediate product with the substrate. In these cases, an external stimulus is 

needed to trigger the catalytic reaction. Among others, this external stimulus can be 

electrical current (electrocatalysis) or light (photocatalysis).  

Various methods can be used to measure the activity of a catalyst. The most 

common methods involve measuring the temporal change of the concentration of 

the substrate or the product during the catalytic reaction. If either the substrate or 

the product absorbs light in the UV-Vis region, this change in the concentration can 

be followed photometrically, that is, by UV-Vis spectroscopy. According to the Beer-

Lambert law, the light a substance absorbs in a specific wavelength is proportional 

to the concentration of this substance (! = !. !. ! , A being the absorbance, ε the molar 

absorptivity that depends on the wavelength, l the length of the light path and c the 

molar concentration of the absorbent). Thus, the UV-Vis absorption of a sample can 

be used to monitor the concentration of the absorber at different times of the 

progressing photocatalytic reaction. 

The study of the photocatalytic activity in this thesis has been carried out 

under illumination with visible light. The light was generated with a xenon lamp 

and an optical filter cutting off wavelengths below 420 nm. For the experiments the 

degradation of a Rhodamine B (RhB) (Sigma, 95%) solution was followed and as 

spectrometer a NanoDrop 2000c from Thermo Scientific was used. The samples, cut 

pieces of woven Kevlar fabric (2 cm x 2 cm), were immersed into 30 mL of a 

Rhodamine B solution in water (10mg/L) and the solution was stirred in dark for 30 
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minutes before illumination to ensure an adsorption/desorption equilibrium of RhB 

to/from the sample. At regular time intervals, 750 µL of the solution were removed 

and the absorption of Rhodamine B at 554 nm was measured. The decrease of the 

absorption values at this particular value was recorded over 120 minutes.  

5.3.- Results and discussion 

5.3.1.- Band gap engineering through VPI 

In order to judge the viability of the VPI hybridization to induce electrical 

conductivity into Kevlar fibres through infiltration of ZnO, we performed quantum 

chemical modelling based on DFT calculations for a better understanding of the 

electronic structure of the polymer. The model system consisted of 8 molecular units 

as depicted in Figure 5.1. Knowing that Kevlar is an electrical insulator, a band gap 

higher than 4 eV was expected. Thus, the HOMO/LUMO gap of 1.59 eV obtained in 

the theoretical model was astonishingly low. Two reasons might explain the 

difference between measured and predicted band gap; on the one hand, the band 

gap values calculated by DFT are commonly lower than the experimentally obtained 

values144,145 and on the other hand, being a model limited to 8 rings only, the high 

order of the polymer chains and the interchain interactions present in the 

macroscopic fibres are not considered, which might act as barriers for electronic 

conduction. 

As shown in Chapter 3 of this thesis, the chemical interactions and the 

structure of the resulting Kevlar-ZnO hybrid material were modelled. Figure 5.1 

shows the structure of the hybrid obtained from the quantum chemical simulations, 

consisting of Kevlar chains covalently cross-linked through its amide groups and 

ZnOH. Besides, the benzenoid rings transform into quinoid rings and the bond 

length of C–O is 1.27 Å when bound to Zn, which is longer than the normal C=O 

bond length of 1.24 Å in Kevlar. The bond length of C–N in neighbourhood of the 

linked Zn changes only slightly from 1.41 Å to 1.40 Å, which indicates a weak 

double bond character. This change from N-H to N-Zn bonding is balanced by a 

redistribution of charge in the conjugated π systems of the Kevlar chains. The 

structure implies transfer of two electrons from each N-H to a π orbital of the imine-

quinoid unit, making this the new HOMO, and transfer of two electrons from each 
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enolate-quinoid π orbital to O-Zn, which becomes the new LUMO. This is confirmed 

by the population analysis, which shows the positive charge of [ZnOH] being 

balanced by an increased negative charge on O and N. The calculated 

HOMO/LUMO gap after infiltration decreases to 1.17 eV. As for the case of the 

initial Kevlar model, the energy gap value is very likely to be underestimated in the 

hybrid material model. However, the calculated lowering of the position of the 

conduction band, resulting in the reduction of the band gap, is reliable.  

 
Figure 5.1: 8 molecular units system before and after ZnO infiltration as modelled by 

DFT. 

 

The quantum chemical simulations indicated that VPI might be used to 

induce electrical conductivity into Kevlar fibres through the infiltration of ZnO. In 

order to verify this, we analysed the structure of the material resulting from the 

infiltration of Kevlar with ZnO and compared it to the theoretical model. The cross-

linking of the Kevlar chains through O-Zn-N bonds observed in the modelled 

system is analysed and described in Chapter 3 of this thesis. However, the 

conversion of benzenoid rings into quinoid rings and the resulting reduction in the 

energy band gap required experimental verification. We compared Kevlar samples 

coated with ZnO by ALD (C-ZnO) and Kevlar samples infiltrated with ZnO by VPI 

(I-ZnO). Both samples were prepared under identical conditions (150 ºC and 200 
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cycles) and with the same precursors (DEZ and water). An exposure step of 30 

seconds for both precursors was used in the infiltration process while no exposure 

was used in the coating process. 

From the UV-Vis absorption spectra of the untreated Kevlar, C-ZnO and I-

ZnO, displayed in Figure 5.2, we observe that the coating with ZnO does not alter 

the polymer characteristics much. The spectrum of C-ZnO shows only a sharp 

absorption peak at 3.4 eV, which corresponds to the band gap of ZnO, and the 

absorption above 2.8 eV is slightly enhanced. The absorption spectrum of I-ZnO, 

however, shows some significant differences. A pronounced absorption peak 

develops at 3 eV and results in an enhanced absorption down to 2.2 eV in 

comparison to both untreated and coated Kevlar. Both, the new peak as well as the 

absorption in the lower energetic region, indicate a correlation between the 

calculated and fabricated materials, that is, the conduction band of Kevlar is lowered 

after infiltration with ZnO.  

 
Figure 5.2: Experimental UV-Vis spectra of unmodified Kevlar (Kevlar, red 

line), ZnO coated Kevlar (C-ZnO, blue line) and ZnO infiltrated Kevlar (I-ZnO, red 

line).  

 

Given the very shallow depth of infiltration and the majority of the Kevlar 

being unaffected after infiltration, identifying the quinoid structures in the I-ZnO 
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sample is not straightforward. Infrared spectroscopy is an ideal technique for 

distinguishing such molecular changes after infiltration, but in a routine FTIR 

measurement, the signal of the unmodified Kevlar will dominate, thus the 

methodology is not suitable in this case. Therefore, nano-FTIR was applied on 

microtomed slices of the Kevlar fibres in a scanning mode, which is capable of 

recording infrared spectra locally with a resolution of 10 nm. With this approach, we 

localized molecular changes near the surface area of the ZnO-infiltrated Kevlar. 

Figure 5.3 shows spectra of the I-ZnO sample in the near-surface area (infiltrated 

area) and in the bulk of the fibre (Kevlar).  

 
 

Figure 5.3: Scheme of the cross-sectioned area of an I-ZnO Kevlar fibre (left) showing 

the measurement points of the nano-FTIR spectra (right). The peaks are marked with 

numbers and correspond to the vibration modes shown in Table 5.1. 

 

The spectra from the bulk of the I-ZnO fibre match very well the far field 

spectra of Kevlar and the vibration peaks calculated from the model by DFT, which 

are all summarized in Table 5.1.  However, the spectra recorded in the infiltrated 

area show three new signatures appearing at 1361, 1465 and 1590 cm-1 (indicated 

with I, II and III). These peaks match the vibrational modes of quinoid rings as 

calculated from the model system after ZnO infiltration (Table 5.1). Thus, the 

conversion of the benzenoid rings into quinoid rings is very likely identified by 
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nano-FTIR. Besides, the peaks related to the vibrations of the benzenoid rings are 

still observed in the nano-FTIR spectrum of the infiltrated area, meaning that both 

benzenoid and quinoid rings are simultaneously present in the Kevlar-ZnO hybrid.   

 

 

 

Table 5.1: Molecular vibration peaks calculated by DFT from the modelled molecule 

before (1-6) and after (I-III) ZnO infiltration. 

 
 

Once the lowering of the band gap and the appearance of the quinoid rings 

were experimentally proven, we measured the electrical conductivity of the fibres 

and its consistency upon deformation of the fibres. For that, the electrical resistance 

of untreated, C-ZnO and I-ZnO samples was measured before and after manually 

bending them. The manual bending consisted of fully folding the fibres to 180º and 

unfolding back to the initial position for three consecutive times. As explained in the 

previous chapters, a thin film of the infiltrated material is unavoidably deposited on 

top of the fibres during the VPI process. Therefore, the measured resistance of 

infiltrated fibres will include contribution of both the coating and the infiltration. 

Upon manually bending the fibres the brittle coating is expected to break and only 

the contribution of the infiltration to the resistance is measured. 
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Figure 5.4 shows the measured resistances for the three tested types of fibres. 

The resistance of the untreated Kevlar fibres was above the detection range of the 

equipment (≈1015 Ω) before and after bending them. In the case of C-ZnO, thanks to 

the ZnO film on top of the fibres, the resistance decreased to 4x1013 �. However, 

after manually bending the fibres, the thin and brittle ceramic coating cracked. Thus, 

the conduction pathway through the semiconducting ZnO shell was interrupted and 

the resistance increased again exceeding the detection range. The experiments 

confirmed that no parasitic infiltration of ZnO occurred during coating, since the 

bent C-ZnO fibres showed similar electrical behaviour as untreated Kevlar. From 

those experiments we can conclude that coating Kevlar fibres with ZnO results in a 

reduction of the electrical resistance, but only as long as the fibres are not bent.  

However, the resistance measurements of the I-ZnO fibres showed very 

different behaviour.  Initially, the infiltrated fibres showed with 2.87x109 Ω a 

significantly lower resistance than the coated fibres. As both C-ZnO and I-ZnO were 

processed for 200 cycles, the contribution of the ZnO coating to the resistance can be 

assumed as being similar for both samples. Therefore, the drop in resistance 

observed from the I-ZnO fibres, indicates that a new conduction path has been 

created upon VPI processing. After bending the fibres, the contribution of the 

coating was diminished and the remaining resistance was with 6.20x1011 � still four 

orders of magnitude lower than that of untreated Kevlar. The resistance increase 

after bending I-ZnO was similar to the increase observed from the C-ZnO sample, 

further confirming that after bending the fibre the electrons cannot flow through the 

ZnO coating and its contribution to the resistance is neglectable.  The remaining 

lower resistance value indicates that the electrons can flow through the new 

conduction path created by the infiltration of ZnO, even after bending the fibres.   

The fabricated material system is very complex, which makes it very difficult 

to find detailed explanations on the nature of the new conduction path. In principle, 

we could consider three different materials being involved, namely the infiltrated 

ZnO, the altered Kevlar and the very interface between ZnO and Kevlar, potentially 

being nitrogen-doped ZnO. The infiltrated ZnO may contribute to the conductivity 

but cannot be the sole reason. The depth of infiltration of ZnO is on the same order 

of magnitude as the coating, but with significantly lower density, thus we could 
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expect a maximum contribution of the same order of magnitude as the coating. 

Thus, the notable reduction of the resistance observed after infiltration confirmed 

that the infiltrated ZnO is not the only material contributing to the conductivity. As 

discussed earlier, the DFT calculations indicate that upon interaction of DEZ with 

the molecular backbone of Kevlar benzenoid units may convert to quinoid units 

with the resulting molecule showing an increased negative charge on O and N and 

thus reduction of the energy band gap. These changes may induce an electronic 

conductivity in the polymer itself, thus the modified Kevlar could be part of the new 

conduction path. Finally, based on the synergetic mutual doping observed by Wang 

et al. in the ZnO infiltration of PANI, it could be assumed that the interaction of the 

infiltrated ZnO with the amide group of Kevlar results in a nitrogen doping of the 

infiltrated ZnO. However, those materials are not spatially separated, but 

intermixed, making it very difficult to identify individual contributions to the 

conductivity.  

 
Figure 5.4: Comparison of electrical resistance of untreated, C-ZnO and I-ZnO 

Kevlar fibres before and after manually bending them. 

 

5.3.2.- Tuning the resistance of the Kevlar-ZnO hybrid 

As the contribution of the infiltration to the resistance was obvious, we 

analysed how the processing parameters affect the resistance of the I-ZnO Kevlar.  
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The infiltration process yields an amount of ZnO being incorporated into the 

substrate with each cycle. Accordingly, the infiltrated volume fraction of the oxide 

will depend on the number of cycles applied. We varied the number of infiltration 

cycles in order to optimize the electronic properties of the infiltrated Kevlar fibres 

and indeed identified a relation between the number of infiltration cycles and the 

resistance. Figure 5.5a shows the resistance of the fibres vs. the number of infiltration 

cycles before and after bending. While up to 100 infiltration cycles did not show any 

significant change in the electrical resistance of the Kevlar fibres, an increase to 200 

and further to 300 cycles resulted in its dramatic decrease. Apparently, a ZnO 

infiltration threshold has to be overcome to achieve a significant decrease in the 

electrical resistance. Besides, the resistance rise after bending the 300 cycles sample is 

smaller than the rise in the 200 cycles sample, indicating an effective incorporation of 

a larger amount of infiltrated ZnO.   

 

 
Figure 5.5: a) Effect of the number of VPI cycles on the resistance of I-ZnO Kevlar 

(exposure time maintained at 60 s) b) Effect of the exposure time on the resistance of 

I-ZnO Kevlar (200 cycles, after bending). 

 

A further processing factor that may alter the electrical properties upon 

infiltration is the exposure time of the substrate to the precursors. In principle, 

higher exposure times allow for deeper infiltration of the precursors and, 

consequently, a thicker subsurface area of Kevlar becoming modified. Figure 5.5b 

shows the dependence of the resistance of I-ZnO Kevlar on different exposure times. 

As expected, increasing the exposure time up to 120 seconds reduces the resistance 

due to the presence of a thicker modified area in which electrons can flow. However, 
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with longer exposure times (200 and 300 seconds) the resistance increases again. 

Two possible reasons may explain the observed increase. On the one hand, the 

infiltrated material always presents a decreasing concentration gradient from the 

surface to the bulk of the substrate. Thus, the longer the exposure time, the deeper 

will the infiltration occur, but the less dense will the material be. After 200 and 300 

seconds of exposure the density of the infiltrated ZnO might be too low to enable a 

flow of electrons. On the other hand, after long exposures times, the purging time is 

also increased to ensure the complete evacuation of the unreacted precursors. This 

could result in a lower than expected amount of infiltrated material.   

Therefore, both the amount of infiltrated ZnO and the density of the material 

are of importance for the electrical properties. The amount is defined by the number 

of cycles and thus the material supplied in total, while the density will be altered 

with the exposure time and thus the diffusion depth of the precursors into the 

polymeric substrate. 

 

 
Figure 5.6: a) Effect of the number of VPI cycles on the resistance of In2O3-infiltrated 

Kevlar (exposure time was maintained at 30 s) b) Effect of the exposure time on the 

resistance of In2O3-infiltrated Kevlar (700 cycles, after bending). 

 

Another possibility to tune the resistance of the samples is to select a different 

material for infiltration. In order to evaluate this pathway, instead of the 

semiconducting ZnO, conducting indium oxide (In2O3) was infiltrated. As expected 

from the conducting nature of the infiltrated oxide, a significant reduction of the 

resistance of the Kevlar fibres was observed already already after 300 cycles of In2O3 
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infiltration. As shown in Figure 5.6a, also the resistance of the indium oxide 

infiltrated Kevlar fibres depended on the number of infiltration cycles. The 

resistance decreased almost linearly when increasing the number of infiltration 

cycles, reaching 5.103 Ohms after 900 cycles at its best. After bending the fibres, the 

contribution of the In2O3 coating was eliminated and only the contribution of the 

In2O3 infiltration was measured. Surprisingly, the samples after 300 and 500 

infiltration cycles showed very similar resistances before and after bending. The 

stability of the electrical resistance to mechanical stress of these samples may arise 

from the amorphous nature of the coating. As shown in the XRD patterns in Figure 

5.7, the sample after 500 infiltration cycles only showed peaks corresponding to the 

crystalline planes of Kevlar. However, from the 700 infiltration cycles sample new 

peaks were observed, which correspond to indium oxide crystal planes. With a low 

number of infiltration cycles (300 and 500 cycles), the In2O3 film grown on top of the 

samples was obviously still very thin and amorphous, and therefore flexible enough 

to sustain mechanical bending without cracking. Thus, the electrons could flow 

through the coating. At higher numbers of infiltration cycles (700 and 900 cycles), the 

coating on top of the fibres was thicker and crystallites grew, resulting in enhanced 

brittleness. Manual bending caused the crystalline coating to crack, with the 

consequence of an increased resistance.  
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Figure 5.7: XRD patterns of the In2O3-infiltrated samples after different numbers of 

infiltration cycles.  

 

Contrary to the case of the ZnO infiltration, changing the exposure time did 

almost not affect the resistance of the indium oxide infiltrated samples. The fibres 

prepared with exposure times varying from 10 to 90 seconds showed almost 

identical resistance after bending. As shown in Figure 5.8, the infiltration depth of 

the In2O3 hardly changed with the exposure time. After increasing the exposure time 

by the factor of 9, that is from 10 s to 90 s, the infiltration depth increased by only 4 

nm. Thus, as the amount of infiltrated indium oxide did not significantly vary, the 

resistance of the hybrid Kevlar-In2O3 was maintained constant.  
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Figure 5.8: TEM images of the cross-sectioned area of the 700 cycles I-In2O3 Kevlar 

fibres after following exposure times: a) 10 s and b) 90 s.  

 

5.3.3.- Photoconductivity 

When a semiconductor absorbs light with energy higher than the band gap 

energy, an increase in its conductivity occurs. The reason of the conductivity change 

is the creation of electron-hole pairs induced by absorption of light.  

The photo response of ZnO has been widely studied because of its 

characteristic slow decay146,147. In general, a decay of the conductivity after cutting 

off the light is expected to be very rapid, due to the solid-state electron-hole 

recombination process. However, in the case of n-type metal oxides, such as ZnO or 

TiO2, the conduction decay occurs slowly, which is determined by surface effects 

(molecular adsorption and desorption processes). Due to the wide band gap of ZnO 

(3,37 eV), ultra violet light is needed to overcome this gap and induce conductivity. 

In the case of I-ZnO Kevlar fibres, the reduction of the band gap and change in the 

absorption spectra implies that the fibres may also interact with visible light, since 

the absorption of light after infiltration rose.  

In order to analyse the effect of visible light on the electrical properties of the 

fibres, we measured the resistance of the samples after bending, while being 

illuminated with a visible light source. From Figure 5.9a one can see that there were 

no changes in the resistance of the untreated and C-ZnO Kevlar fibres upon 
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illumination. Thus, visible light is not energetic enough to excite neither the 

untreated nor the C-ZnO fibres.  

However, the resistance of infiltrated fibres was further lowered by 3 orders 

of magnitude to 6.23x108 Ω after illumination. Such a significant change in the 

electrical resistance indicates that the electronic configuration of I-ZnO fibres is very 

different to that of untreated Kevlar. As predicted by DFT modelling and further 

confirmed by the UV-Vis spectroscopy, with the infiltration of ZnO the band gap of 

Kevlar shifted to a regime where visible light is sufficiently energetic to create free 

charge carriers in the material. Considering the contribution of the ZnO coating 

being diminished after bending the fibres, one of the already mentioned three 

materials created during the infiltration of ZnO has to be responsible for the 

photocurrent generation under visible light. Among these materials, the infiltrated 

ZnO cannot be excited by visible light, as there is no reason to assume that its 

properties differ that seriously from bulk ZnO. Therefore, the material that was 

excited by visible light may be either the modified Kevlar or the interfacial nitrogen-

doped ZnO. Similar to the case of characterization of the electrical resistance, it is 

difficult to identify the contribution of the individual components, as both materials 

are mixed.  

 

 
Figure 5.9: a) Comparison of electrical resistance of untreated, C-ZnO and I-ZnO 

Kevlar fibres in the dark and when illuminated with visible light. All samples were 

measured after bending. b) Photocurrent measurement of I-ZnO Kevlar fibres under 

visible light applying a bias voltage of 10V. 
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Figure 5.9b shows the time dependence of the current generated by I-ZnO 

Kevlar under visible light illumination. The photocurrent generated after 30 minutes 

of visible light illumination was around 20 times higher than the dark current with 

the same sample. This value is comparable to the photocurrent values obtained from 

ZnO nanoparticle films, however, illuminated with UV light at 278 nm 

wavelength148. The characteristic slow decay of ZnO was observed (τ decay = 38 

minutes) in the I-ZnO fibres and the current did not restore the initial values. This is 

an indication of free carriers being trapped by the molecular adsorption and 

desorption processes mentioned previously. For the embedded ZnO, those 

molecules may be the polymeric fractions of Kevlar surrounding the infiltrated ZnO, 

together with potentially in-diffusing small molecules, such as O2 or similar.  

5.3.4.- Photocatalytic activity 

The photocatalytic activity of semiconducting oxides is very interesting from 

the applications perspective and important for numerous approaches in 

environmental protection149,150. As a consequence of its high photosensitivity, 

nontoxic nature and the intrinsic wide band gap, ZnO is considered being excellent 

for such applications. Even though highly efficient ZnO-based photocatalysts have 

been reported, most of them only work upon illumination with UV light151,152. 

However, visible light responsive photocatalysts are highly desired as they can be 

more efficient by harvesting energy from a wider spectrum of the solar light.   

As seen from the UV-Vis spectrum and the photoconductivity measurements, 

the I-ZnO Kevlar absorbs light in the visible region. In order to verify whether or not 

the I-ZnO samples could be used as photocatalysts operating with visible light, we 

studied the degradation of Rhodamine B under those conditions. Figure 5.10 shows 

the evolution of the Rhodamine B concentration over time upon illumination and in 

contact with the various catalysts.  
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Figure 5.10: Degradation of Rhodamine B over time upon illumination with visible 

light and in contact with the various synthesized samples.  

 

Untreated Kevlar did not show any catalytic activity under visible light 

illumination. For comparison, the photocatalytic activity of untreated Kevlar in 

presence of commercial ZnO powder was measured (dashed black line in Figure 

5.10). In this case, some photocatalytic degradation of Rhodamine B occurred, and 

the concentration of the dye was reduced by around 30%. The C-ZnO Kevlar fibres 

showed similar results, confirming that the electronic structure of Kevlar and ZnO 

are similar to the previous case. The reason for the observed slight catalytic activity 

may be that due to the imperfection of the optical cut-off filter a small amount of UV 

light could reach the sample, which will be absorbed by the ZnO, thereby inducing a 

photocatalytic process. In contrast to those samples, a degradation of 80% of the 

Rhodamine B was obtained with I-ZnO. This huge difference in the photocatalytic 

activity of this sample confirmed not only that the band gap is shifted to the visible 

light region, but also that I-ZnO fibres are active as photocatalysts under those 

conditions.  

We analysed the effect of the amount of infiltrated ZnO in the I-ZnO fibres on 

the degradation efficiency (Figure 5.11a). Similar to the case of electrical resistance 

measurements, we observed that there is a minimum amount of ZnO that needs to 

be infiltrated in order to obtain a significant increase in the catalytic activity. 
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Therefore, the I-ZnO fibres processed for 50 and 100 cycles showed a rather weak 

photocatalytic activity. The strongest catalytic activity was observed from the 200 

cycles sample. The stability and durability of the I-ZnO Kevlar as photocatalyst was 

tested by measuring the catalytic activity of the 200 cycles sample 5 consecutive 

times. As shown in Figure 5.11b, no decrease in the catalytic activity was observed 

until the third test and the activity was reduced by 50% after 5 tests. This rapid loss 

of activity may be due to the dissolution of the infiltrated ZnO by the acidic (pH ≈ 

4,5) Rhodamine B solution. If the infiltrated ZnO dissolves, the bonds and 

interactions between the ZnO and Kevlar chains disappear. As the photocatalytic 

activity using visible light arises from the band gap shift triggered by these 

interactions, dissolution of ZnO assumes a loss of the catalytic activity.  

 

 
Figure 5.11: The photocatalytic activity of I-ZnO as a function of a) the number of 

infiltration cycles and b) the number of consecutive experiments (200 cycles sample). 

 

5.4.- Conclusions 

To summarize, we have demonstrated that VPI can successfully be used to 

alter the electronic properties of some insulating technical polymers. Using Kevlar as 

example, which besides simple coating approaches has by now proven to be largely 

resistant to functionalization, we showed that the polymer can be made conductive 

and that the conductivity is a result of the attack of the precursor on the polymer 

backbone. This modification changed the electronic situation by shifting charge 

density towards the polymer chain. The DFT-calculated model system confirmed 

such changes, which were experimentally identified by localizing quinoid structures 



Chapter 5: Development and characterization of a Kevlar-ZnO hybrid conductive photocatalyst 

 

   83 

through nano-FTIR. The conductivity was strongly relying on the interface between 

the polymer and the inorganic phase, which can be derived from the comparison of 

coated and infiltrated fibres. Not only the infiltration results in higher conductivity, 

but also photocatalytic activity under visible light was demonstrated. The shift of the 

band gap towards lower energies made it possible to use the polymer-metal oxide 

hybrid as a photocatalyst for the degradation of Rhodamine B. Further optimization 

of both the process and the involved materials will be performed in order to reach 

levels of conductivity and photoactivity that are better suitable for integration of 

electronics into Kevlar-based textiles or materials, but plenty applications may 

already be approached with the current material system. 
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Chapter 6 

Summary and outlook 

 

This thesis presents different approaches for the functionalization of Kevlar 

fibres, which are based on vapour phase infiltration. The three main parts (chapters 

3, 4 and 5) show how the infiltration and hybridization of Kevlar with a metal oxide 

leads to the introduction of new functionalities and improvement of the stability and 

mechanical properties of this polymer.  

In the first part, Kevlar fibres were infiltrated with ZnO through VPI and the 

structure of the created ZnO-Kevlar material was theoretically and experimentally 

studied. It was shown that this hybrid material consisted of ZnO clusters grown 

among covalently cross-linked Kevlar chains.  The effect of the hybridization on the 

thermal and UV stability of the fibres was studied showing an increase of almost 10 

ºC in the decomposition temperature and the complete suppression of the UV 

induced degradation, while maintaining 90% of the modulus of toughness. The 

results were compared with the ZnO-coated Kevlar fibres´ results, showing that not 

the ZnO coating (which is present in both the coated and the infiltrated samples), but 

the infiltration and hybridization of Kevlar with ZnO were responsible for the 

observed improvement. Besides, the negative impact of the ZnO coating on the UV 

stability of the fibres was also demonstrated. 

A novel combined ALD/VPI process was presented in the second part. 

Thanks to this combined process, it is possible to coat a polymeric substrate with a 

metal oxide, while infiltrating with another metal oxide. Using this ALD/VPI 

process Al2O3 coated and ZnO infiltrated Kevlar fibres were prepared. Similar to the 

observations in the previous chapter, these fibres showed improved thermal and UV 

stability as a consequence of the ZnO-Kevlar hybrid created in the subsurface area. 

However, contrary to the previous case, the Al2O3 coating increased the modulus of 

toughness of Kevlar by 10%. Therefore, thanks to unique combination of Al2O3 
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coating and ZnO infiltration, mechanically improved and UV resistant Kevlar fibres 

were created.  

Finally, in the last part the electrical and photocatalytic properties of the ZnO-

infiltrated Kevlar fibres were analysed. It was theoretically predicted and 

experimentally proven that due to the interaction between the ZnO and the polymer, 

the electronic band gap of Kevlar can be reduced. This reduction resulted in 

increased conductivity and photocurrent generation with visible light illumination. 

It was confirmed that the conductivity increase arose from the Kevlar-ZnO hybrid as 

considerable electron flow was maintained after intentional cracking of the exterior 

ZnO coating. The conductivity was tuned by the number of VPI cycles and by the 

exposure time. Besides, the shift of the band gap to the visible range was also 

confirmed by analysing the photocatalytic activity of the hybrid fibres under visible 

light illumination.  

In conclusion, the potential of VPI for the functionalization of Kevlar has been 

proven and a new combined ALD/VPI process has been developed. The already 

outstanding mechanical properties of Kevlar have been improved and its main 

weakness, the thermal and UV sensitivity, have been suppressed. Besides, the 

electronic band gap of the polymer has been reduced, leading to electrical 

conductivity and photocatalytic activity under visible light. It can be foreseen that 

the results presented in this work could be improved and applied to other polymer-

precursor combinations.  



  Bibliography 
 

   87 

Bibliography 

 

1.  H. Ghiradella.: Light and Color on the Wing: Structural Colors in Butterflies 

and Moths. Appl. Opt. 30, 3492 (1991). 

2.  A. C. Mendes, E. T. Baran, R. L. Reis, and H. S. Azevedo.: Self-Assembly in 

Nature: Using the Principles of Nature to Create Complex Nanobiomaterials. 

Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology 5, 582 (2013). 

3.  G. Kickelbick.: Hybrid Materials: Synthesis, Chracterization and Applications; Jhon 

Wiley & Sons, (2007). 

4.  C. C. Broomell, M. A. Mattoni, F. W. Zok, and J. H. Waite.: Critical Role of 

Zinc in Hardening of Nereis Jaws. J. Exp. Biol. 209, 3219 (2006). 

5.  C. C. Broomell, F. W. Zok, and J. H. Waite.: Role of Transition Metals in 

Sclerotization of Biological Tissue. Acta Biomater. 4, 2045 (2008). 

6.  B. W. Cribb, A. Stewart, H. Huang, R. Truss, and B. Noller.: Unique Zinc Mass 

in Mandibles Separates Drywood Termites from Other Groups of Termites. 

Naturwissenschaften 95, 433 (2008). 

7.  Y. Politi, M. Priewasser, E. Pippel, P. Zaslansky, J. Hartmann, S. Siegel, C. Li, 

F. G. Barth, and P. Fratzl.: A Spider’s Fang: How to Design an Injection Needle 

Using Chitin-Based Composite Material. Adv. Funct. Mater. 22, 2519 (2012). 

8.  S. W. Werneke, C. Swann, L. A. Farquharson, K. S. Hamilton, and A. M. 

Smith.: The Role of Metals in Molluscan Adhesive Gels. J. Exp. Biol. 210, 2137 

(2007). 

9.  H. Zhao, C. Sun, R. J. Stewart, and J. H. Waite.: Cement Proteins of the Tube-

Building Polychaete Phragmatopoma Californica. J. Biol. Chem. 280, 42938 

(2005). 

10.  E. Carrington, and J. M. Gosline.: Mechanical Design of Mussel Byssus: Load 

Cycle and Strain Rate Dependence. Am. Malacol. Bull. 18, 135 (2004). 

11.  H. Van Olphen.: Maya Blue : A Clay-Organic Pigment ? Science (80-. ). 154, 645 

(1966). 

12.  J. J. Boon, F. Hoogland, and K. Keune.: Chemical Processes in Aged Oil Paints 



Bibliography 
 

 88 

Affecting Metal Soap Migration and Aggregation. AIC Paint. Spec. Gr. 

Postprints 19, 18 (2007). 

13.  K. Keune, and J. J. Boon.: Analytical Imaging Studies of Cross-Sections of 

Paintings Affected by Lead Soap Aggregate Formation. Stud. Conserv. 52, 161 

(2007). 

14.  L. A. Belfiore, P. Das, and F. Bosse.: Polymers and Their Complexes with 

Palladium Chloride. Polym. Phys. 34, 2675 (1996). 

15.  L. A. Belfiore, E. Indra, and P. Das.: Multi-Functional Coordination Crosslinks 

in Poly(Vinylamine) Complexes with Cobalt Chloride. Macromol. Symp. 114, 35 

(1997). 

16.  H. Berke.: The Invention of Blue and Purple Pigments in Ancient Times. Chem. 

Soc. Rev. 36, 15 (2007). 

17.  W. Xu, K. B. Thapa, Q. Ju, Z. Fang, and W. Huang.: Heterogeneous Catalysts 

Based on Mesoporous Metal-Organic Frameworks. Coord. Chem. Rev. No. 

October(2017). 

18.  S.-M. Lee, E. Pippel, U. Gösele, C. Dresbach, Y. Qin, C. V. Chandran, T. 

Braäuniger, G. Hause, and M. Knez.: Greatly Increased Toughness of 

Infiltrated Spider Silk. Science (80-. ). 324, 488 (2009). 

19.  T. Suntola, and J. Antson.: Method for Producing Compound Thin Films. 

4058430, 1977. 

20.  N. P. Dasgupta, X. Meng, J. W. Elam, and A. B. F. Martinson.: Atomic Layer 

Deposition of Metal Sulfide Materials. Acc. Chem. Res. 48, 341 (2015). 

21.  B. S. Lim, A. Rahtu, and R. G. Gordon.: Atomic Layer Deposition of Transition 

Metals. Nat. Mater. 2, 749 (2003). 

22.  J. Hamalainen, M. Ritala, and M. Leskela.: Atomic Layer Deposition of Noble 

Metals and Their Oxides. Chem. Mater. 26, 786 (2014). 

23.  R. W. Johnson, A. Hultqvist, and S. F. Bent.: A Brief Review of Atomic Layer 

Deposition: From Fundamentals to Applications. Mater. Today 17, 236 (2014). 

24.  M. Leskelä, and M. Ritala.: Atomic Layer Deposition Chemistry: Recent 

Developments and Future Challenges. Angew. Chemie - Int. Ed. 42, 5548 (2003). 

25.  S. M. George.: Atomic Layer Deposition: An Overview. Chem. Rev. 110, 111 

(2010). 



  Bibliography 
 

   89 

26.  M. Leskelä, and M. Ritala.: Atomic Layer Deposition (ALD): From Precursors 

to Thin Film Structures. Thin Solid Films 409, 138 (2002). 

27.  T. Yoshimura, S. Tatsuura, and W. Sotoyama.: Polymer Films Formed with 

Monolayer Growth Steps by Molecular Layer Deposition. Appl. Phys. Lett. 59, 

482 (1991). 

28.  S. M. George, B. Yoon, and A. A. Dameron.: Surface Chemistry for Molecular 

Layer Deposition of Organic and Hybrid Organic−Inorganic Polymers. Acc. 

Chem. Res. 42, 498 (2009). 

29.  M. Ritala, and J. Niinistö.: Industrial Applications of Atomic Layer 

Deposition. ECS Trans. 25, 641 (2009). 

30.  W. Niu, X. Li, S. K. Karuturi, D. W. Fam, H. Fan, S. Shrestha, L. H. Wong, and 

A. I. Y. Tok.: Applications of Atomic Layer Deposition in Solar Cells. 

Nanotechnology 26, (2015). 

31.  R. Matero, M. Ritala, M. Leskelä, T. Salo, J. Aromaa, and O. Forsén.: Atomic 

Layer Deposited Thin Films for Corrosion Protection. J. Phys. IV 9, 493 (1999). 

32.  J. Lu, K.-B. Low, Y. Lei, J. A. Libera, A. Nicholls, P. C. Stair, and J. W. Elam.: 

Toward Atomically-Precise Synthesis of Supported Bimetallic Nanoparticles 

Using Atomic Layer Deposition. Nat. Commun. 5, 1 (2014). 

33.  M. J. Weber, A. J. M. Mackus, M. A. Verheijen, C. van der Marel, and W. M. 

M. Kessels.: Supported Core/Shell Bimetallic Nanoparticles Synthesis by 

Atomic Layer Deposition. Chem. Mater. 24, 2973 (2012). 

34.  T. M. A.-F. and G. N. Diefeng Gu, Helmut Baumgart.: Synthesis of Nested 

Coaxial Multiple- Walled Nanotubes by Atomic Layer. ACS Nano 4, 753 (2010). 

35.  H. Shin, D. K. Jeong, J. Lee, M. M. Sung, and J. Kim.: Formation of TiO2 and 

ZrO2 Nanotubes Using Atomic Layer Deposition with Ultraprecise Control of 

the Wall Thickness. Adv. Mater. 16, 1197 (2004). 

36.  N. Pinna, and M. Knez.: Atomic Layer Deposition of Nanostructured Materials; 

Whiley-VCH, (2012). 

37.  M. Knez.: Diffusion Phenomena in Atomic Layer Deposition. Semicond. Sci. 

Technol. 27, (2012). 

38.  C. Z. Leng, and M. D. Losego.: Vapor Phase Infiltration (VPI) for 

Transforming Polymers into Organic–Inorganic Hybrid Materials: A Critical 



Bibliography 
 

 90 

Review of Current Progress and Future Challenges. Mater. Horiz. 4, 747 (2017). 

39.  S. M. Lee, E. Pippel, O. Moutanabbir, J. H. Kim, H. J. Lee, and M. Knez.: In 

Situ Raman Spectroscopic Study of Al-Infiltrated Spider Dragline Silk under 

Tensile Deformation. ACS Appl. Mater. Interfaces 6, 16827 (2014). 

40.  S. Lee, E. Pippel, O. Moutanabbir, I. Gunkel, T. Thurn-albrecht, and M. Knez.: 

Improved Mechanical Stability of Dried Collagen Membrane after Metal 

Infiltration. Appl. Mater. Interfaces 2, 2436 (2010). 

41.  K. E. Gregorczyk, D. F. Pickup, M. G. Sanz, I. A. Irakulis, C. Rogero, and M. 

Knez.: Tuning the Tensile Strength of Cellulose through Vapor-Phase 

Metalation. Chem. Mater. 27, 181 (2015). 

42.  L. Zhang, A. J. Patil, L. Li, A. Schierhorn, S. Mann, U. Gösele, and M. Knez.: 

Chemical Infiltration during Atomic Layer Deposition: Metalation of 

Porphyrins as Model Substrates. Angew. Chemie Int. Ed. 48, 4982 (2009). 

43.  S. M. Lee, V. Ischenko, E. Pippel, A. Masic, O. Moutanabbir, P. Fratzl, and M. 

Knez.: An Alternative Route towards Metal-Polymer Hybrid Materials 

Prepared by Vapor-Phase Processing. Adv. Funct. Mater. 21, 3047 (2011). 

44.  C. D. McClure, C. J. Oldham, and G. N. Parsons.: Effect of Al2O3 ALD 

Coating and Vapor Infusion on the Bulk Mechanical Response of Elastic and 

Viscoelastic Polymers. Surf. Coatings Technol. 261, 411 (2015). 

45.  K. Dusoe, X. Ye, K. Kisslinger, A. Stein, S.-W. Lee, and C.-Y. Nam.: Ultra-High 

Elastic Strain Energy Storage in Metal-Oxide-Infiltrated Patterned Hybrid 

Polymer Nanocomposites. Nano Lett. 17, 7416 (2017). 

46.  B. Gong, Q. Peng, J. S. Jur, C. K. Devine, K. Lee, and G. N. Parsons.: Sequential 

Vapor Infiltration of Metal Oxides into Sacrificial Polyester Fibers: Shape 

Replication and Controlled Porosity of Microporous/Mesoporous Oxide 

Monoliths. Chem. Mater. 23, 3476 (2011). 

47.  C.-Y. Nam, A. Stein, and K. Kisslinger.: Direct Fabrication of High Aspect-

Ratio Metal Oxide Nanopatterns via Sequential Infiltration Synthesis in 

Lithographically Defined SU-8 Templates. J. Vac. Sci. Technol. B, Nanotechnol. 

Microelectron. Mater. Process. Meas. Phenom. 33, 06F201 (2015). 

48.  E. C. Dandley, P. C. Lemaire, Z. Zhu, A. Yoon, L. Sheet, and G. N. Parsons.: 

Wafer-Scale Selective-Area Deposition of Nanoscale Metal Oxide Features 



  Bibliography 
 

   91 

Using Vapor Saturation into Patterned Poly(Methyl Methacrylate) Templates. 

Adv. Mater. Interfaces 4, 1 (2017). 

49.  B. Gong, D. H. Kim, and G. N. Parsons.: Mesoporous Metal Oxides by Vapor 

Infiltration and Atomic Layer Deposition on Ordered Surfactant Polymer 

Films. Langmuir 28, 11906 (2012). 

50.  Y. Wang, Y. Qin, A. Berger, E. Yau, C. He, L. Zhang, U. Gösele, M. Knez, and 

M. Steinhart.: Nanoscopic Morphologies in Block Copolymer Nanorods as 

Templates for Atomic-Layer Deposition of Semiconductors. Adv. Mater. 21, 

2763 (2009). 

51.  Q. Peng, Y. C. Tseng, S. B. Darling, and J. W. Elam.: Nanoscopic Patterned 

Materials with Tunable Dimensions via Atomic Layer Deposition on Block 

Copolymers. Adv. Mater. 22, 5129 (2010). 

52.  Q. Peng, Y. C. Tseng, S. B. Darling, and J. W. Elam.: A Route to Nanoscopic 

Materials via Sequential Infiltration Synthesis on Block Copolymer Templates. 

ACS Nano 5, 4600 (2011). 

53.  J. J. Kim, H. S. Suh, C. Zhou, A. U. Mane, B. Lee, S. Kim, J. D. Emery, J. W. 

Elam, P. F. Nealey, P. Fenter, and T. T. Fister.: Mechanistic Understanding of 

Tungsten Oxide In-Plane Nanostructure Growth via Sequential Infiltration 

Synthesis. Nanoscale 10, 3469 (2018). 

54.  O. M. Ishchenko, S. Krishnamoorthy, N. Valle, J. Guillot, P. Turek, I. Fechete, 

and D. Lenoble.: Investigating Sequential Vapor Infiltration Synthesis on 

Block-Copolymer-Templated Titania Nanoarrays. J. Phys. Chem. C 120, 7067 

(2016). 

55.  J. Yin, Q. Xu, Z. Wang, X. Yao, and Y. Wang.: Highly Ordered TiO 2 

Nanostructures by Sequential Vapour Infiltration of Block Copolymer Micellar 

Films in an Atomic Layer Deposition Reactor. J. Mater. Chem. C 1, 1029 (2013). 

56.  J. W. Choi, Z. Li, C. T. Black, D. P. Sweat, X. Wang, and P. Gopalan.: 

Patterning at the 10 Nanometer Length Scale Using a Strongly Segregating 

Block Copolymer Thin Film and Vapor Phase Infiltration of Inorganic 

Precursors. Nanoscale 8, 11595 (2016). 

57.  Y. She, J. Lee, B. T. Diroll, B. Lee, S. Aouadi, E. V. Shevchenko, and D. 

Berman.: Rapid Synthesis of Nanoporous Conformal Coatings via Plasma-



Bibliography 
 

 92 

Enhanced Sequential Infiltration of a Polymer Template. ACS Omega 2, 7812 

(2017). 

58.  Y.-C. Tseng, Q. Peng, L. E. Ocola, D. A. Czaplewski, J. W. Elam, and S. B. 

Darling.: Enhanced Polymeric Lithography Resists via Sequential Infiltration 

Synthesis. J. Mater. Chem. 21, 11722 (2011). 

59.  Y.-C. Tseng, Q. Peng, L. E. Ocola, D. A. Czaplewski, J. W. Elam, and S. B. 

Darling.: Etch Properties of Resists Modified by Sequential Infiltration 

Synthesis. J. Vac. Sci. Technol. B 29, 06FG01 (2011). 

60.  Y. C. Tseng, Q. Peng, L. E. Ocola, J. W. Elam, and S. B. Darling.: Enhanced 

Block Copolymer Lithography Using Sequential Infiltration Synthesis. J. Phys. 

Chem. C 115, 17725 (2011). 

61.  A. Rahman, M. Liu, and C. T. Black.: Block Copolymer Self Assembly for 

Design and Vapor-Phase Synthesis of Nanostructured Antireflective Surfaces. 

J. Vac. Sci. Technol. B 32, 06FE02 (2014). 

62.  D. Berman, S. Guha, B. Lee, J. W. Elam, S. B. Darling, and E. V. Shevchenko.: 

Sequential Infiltration Synthesis for the Design of Low Refractive Index 

Surface Coatings with Controllable Thickness. ACS Nano 11, 2521 (2017). 

63.  H. I. Akyildiz, M. Lo, E. Dillon, A. T. Roberts, H. O. Everitt, and J. S. Jur.: 

Formation of Novel Photoluminescent Hybrid Materials by Sequential Vapor 

Infiltration into Polyethylene Terephthalate Fibers. J. Mater. Res. 29, 2817 

(2014). 

64.  H. I. Akyildiz, K. L. Stano, A. T. Roberts, H. O. Everitt, and J. S. Jur.: 

Photoluminescence Mechanism and Photocatalytic Activity of Organic-

Inorganic Hybrid Materials Formed by Sequential Vapor Infiltration. Langmuir 

32, 4289 (2016). 

65.  L. E. Ocola, D. J. Gosztola, A. Yanguas-Gil, H.-S. Suh, and A. Connolly.: 

Photoluminescence of Sequential Infiltration Synthesized ZnO 

Nanostructures. SPIE Proc. 9755, 97552C (2016). 

66.  L. E. Ocola, A. Connolly, D. J. Gosztola, R. D. Schaller, and A. Yanguas-Gil.: 

Infiltrated Zinc Oxide in Poly(Methyl Methacrylate): An Atomic Cycle Growth 

Study. J. Phys. Chem. C 121, 1893 (2017). 

67.  S. Obuchovsky, I. Deckman, M. Moshonov, T. Segal Peretz, G. Ankonina, T. J. 



  Bibliography 
 

   93 

Savenije, and G. L. Frey.: Atomic Layer Deposition of Zinc Oxide onto and into 

P3HT for Hybrid Photovoltaics. J. Mater. Chem. C 2, 8903 (2014). 

68.  M. Moshonov, and G. L. Frey.: Directing Hybrid Structures by Combining 

Self-Assembly of Functional Block Copolymers and Atomic Layer Deposition: 

A Demonstration on Hybrid Photovoltaics. Langmuir 31, 12762 (2015). 

69.  Y. Yu, Z. Li, Y. Wang, S. Gong, and X. Wang.: Sequential Infiltration Synthesis 

of Doped Polymer Films with Tunable Electrical Properties for Efficient 

Triboelectric Nanogenerator Development. Adv. Mater. 27, 4938 (2015). 

70.  W. Wang, C. Chen, C. Tollan, F. Yang, Y. Qin, and M. Knez.: Efficient and 

Controllable Vapor to Solid Doping of the Polythiophene P3HT by Low 

Temperature Vapor Phase Infiltration. J. Mater. Chem. C 5, 2686 (2017). 

71.  W. Wang, F. Yang, C. Chen, L. Zhang, Y. Qin, and M. Knez.: Tuning the 

Conductivity of Polyaniline through Doping by Means of Single Precursor 

Vapor Phase Infiltration. Adv. Mater. Interfaces 4, 1 (2017). 

72.  W. Wang, C. Chen, C. Tollan, F. Yang, M. Beltrán, Y. Qin, and M. Knez.: 

Conductive Polymer-Inorganic Hybrid Materials through Synergistic Mutual 

Doping of the Constituents. ACS Appl. Mater. Interfaces 9, 27964 (2017). 

73.  M. Panar, P. Avakian, R. C. Blume, K. H. Gardner, T. D. Gierke, H. H. Yang, 

and E. I. P. De Nemours.: Morphology of Poly ( p-Phenylene Terephthalamide 

) Fibers. J. Polym. Sci. Polym. Phys. Ed. 21, 1955 (1983). 

74.  E. G. Chatzi, and J. L. Koenig.: Morphology and Structure of Kevlar Fibers: A 

Review. Polym. Plast. Technol. Eng. 26, 229 (1987). 

75.  Y. Rao, A. J. Waddon, and R. J. Farris.: The Evolution of Structure and 

Properties in Poly ( p -Phenylene Terephthalamide ) Fibers. Polymer (Guildf). 

42, 5925 (2001). 

76.  M. R. Roenbeck, E. J. Sandoz-Rosado, J. Cline, V. Wu, P. Moy, M. Afshari, D. 

Reichert, S. R. Lustig, and K. E. Strawhecker.: Probing the Internal Structures 

of Kevlar® Fibers and Their Impacts on Mechanical Performance. Polym. 

(United Kingdom) 128, 200 (2017). 

77.  D. Ahmed, Z. Hongpeng, K. Haijuan, L. Jing, M. Yu, and Y. Muhuo.: 

Microstructural Developments of Poly (p-Phenylene Terephthalamide) Fibers 

during Heat Treatment Process: A Review. Mater. Res. 17, 1180 (2014). 



Bibliography 
 

 94 

78.  DuPont.: KEVLAR Aramid Fiber: Technical Guide; (2011). 

79.  N. J. Abbott, J. G. Donovan, and M. M. Schoppee.: The Effect of Temperature and 

Strain Rate on the Tensile Properties of Kevlar and PBI Yarns; (1974). 

80.  H. Zhang, J. Zhang, J. Chen, X. Hao, S. Wang, X. Feng, and Y. Guo.: Effects of 

Solar UV Irradiation on the Tensile Properties and Structure of PPTA Fiber. 

Polym. Degrad. Stab. 91, 2761 (2006). 

81.  C. X. Wang, M. Du, J. C. Lv, Q. Q. Zhou, Y. Ren, G. L. Liu, D. W. Gao, and L. 

M. Jin.: Surface Modification of Aramid Fiber by Plasma Induced Vapor Phase 

Graft Polymerization of Acrylic Acid . I . Influence of Plasma Conditions. Appl. 

Surf. Sci. 349, 333 (2015). 

82.  B. Song, L. Meng, and Y. Huang.: Surface Modification of PBO Fiber through 

Oxygen Plasma Induced Vapor Phase Grafting of Acrylic Acid. Mater. Lett. 83, 

118 (2012). 

83.  P. Katangur, P. K. Patra, and S. B. Warner.: Nanostructured Ultraviolet 

Resistant Polymer Coatings. Polym. Degrad. Stab. 91, 2437 (2006). 

84.  S. Kathirvelu, L. D’Souza, and B. Dhurai.: UV Protection Finishing of Textiles 

Using ZnO Nanoparticles. Indian J. Fibre Text. Res. 34, 267 (2009). 

85.  A. Gupta.: Improving UV Resistance of High Strength Fibers, North Carolina 

State University, (2005). 

86.  X. Xiao, X. Liu, D. Fang, C. Zhang, L. Xia, and W. Xu.: Highly Anti-UV 

Properties of Silk Fiber with Uniform and Conformal Nanoscale TiO2 Coatings 

via Atomic Layer Deposition. Appl. Mater. Interfaces 7, 21326 (2015). 

87.  W. G.G., C. T.E., and I. P.C.: Putting Function into Fashion: Organic 

Conducting Polymer Fibres and Textiles. Fibers Polym. 8, 135 (2007). 

88.  E. Gasana, P. Westbroek, J. Hakuzimana, K. De Clerck, G. Priniotakis, P. 

Kiekens, and D. Tseles.: Electroconductive Textile Structures through 

Electroless Deposition of Polypyrrole and Copper at Polyaramide Surfaces. 

Surf. Coatings Technol. 201, 3547 (2006). 

89.  J. Lee, H. Kwon, J. Seo, S. Shin, J. H. Koo, C. Pang, S. Son, J. H. Kim, Y. H. 

Jang, D. E. Kim, and T. Lee.: Conductive Fiber-Based Ultrasensitive Textile 

Pressure Sensor for Wearable Electronics. Adv. Mater. 27, 2433 (2015). 

90.  D. Kincal, A. Kumar, A. D. Child, and J. R. Reynolds.: Conductivity Switching 



  Bibliography 
 

   95 

in Polypyrrole-Coated Textile Fabrics as Gas Sensors. Synth. Met. 92, 53 (1998). 

91.  B. Engineering.: Conjugated Polymer-Based Conductive Fibers for Smart Textile 

Applications; Vol. 46. 

92.  C. Xiang, W. Lu, Y. Zhu, Z. Sun, Z. Yan, C. C. Hwang, and J. M. Tour.: Carbon 

Nanotube and Graphene Nanoribbon-Coated Conductive Kevlar Fibers. ACS 

Appl. Mater. Interfaces 4, 131 (2012). 

93.  B. K. Little, Y. Li, V. Cammarata, and B. R.: Metallization of Kevlar Fibres with 

Gold. Appl. Mater. Interfaces 3, 1965 (2011). 

94.  Y. Gao, K. Sim, S. Sun, Z. Chen, J. Song, and C. Yu.: Crack-Insensitive 

Wearable Electronics Enabled Through High-Strength Kevlar Fabrics. 1, 1 

(2015). 

95.  X. Zhao, K. Hirogaki, I. Tabata, S. Okubayashi, and T. Hori.: A New Method 

of Producing Conductive Aramid Fibers Using Supercritical Carbon Dioxide. 

Surf. Coatings Technol. 201, 628 (2006). 

96.  I. Amenabar, S. Poly, W. Nuansing, E. H. Hubrich, A. A. Govyadinov, F. 

Huth, R. Krutokhvostov, L. Zhang, M. Knez, J. Heberle, A. M. Bittner, and R. 

Hillenbrand.: Structural Analysis and Mapping of Individual Protein 

Complexes by Infrared Nanospectroscopy. Nat. Commun. 4, (2013). 

97.  I. Azpitarte, A. Zuzuarregui, H. Ablat, L. Ruiz-Rubio, A. López-Ortega, S. D. 

Elliott, and M. Knez.: Suppressing the Thermal and Ultraviolet Sensitivity of 

Kevlar by Infiltration and Hybridization with ZnO. Chem. Mater. 29, 10068 

(2017). 

98.  X. Xu, L. Heng, X. Zhao, J. Ma, L. Lin, and L. Jiang.: Multiscale Bio-Inspired 

Honeycomb Structure Material with High Mechanical Strength and Low 

Density. J. Mater. Chem. 22, 10883 (2012). 

99.  N. Reddy, and Y. Yang.: Structure and Properties of Chicken Feather Barbs as 

Natural Protein Fibers. J. Polym. Environ. 15, 81 (2007). 

100.  J.-Y. Rho, L. Kuhn-Spearing, and P. Zioupos.: Mechanical Properties and the 

Hierarchical Structure of Bone. Med. Eng. Phys. 20, 92 (1998). 

101.  R. B. Martin.: Determinants of the Mechanical Properties of Bones. J. Biomech. 

24, 79 (1991). 

102.  C. Y. Yue, G. X. Sui, and H. C. Looi.: Effects of Heat Treatment on the 



Bibliography 
 

 96 

Mechanical Properties of Kevlar-29 Fibre. Compos. Sci. Technol. 60, 421 (2000). 

103.  M. A. Said, B. Dingwall, and A. Gupta.: Investigation of Ultra Violet ( UV ) 

Resistance for High Strength Fibers. Adv. Sp. Res. 37, 2052 (2006). 

104.  Y. Wang, and Y. M. Xia.: Experimental and Theoretical Study on the Strain 

Rate and Temperature Dependence of Mechanical Behaviour of Kevlar Fibre. 

Compos. Part A Appl. Sci. Manuf. 30, 1251 (1999). 

105.  R. Orban.: New Metal-Coated Fibers and Fabric Lead to Novel, Practical 

Products. J. Ind. Text. 18, 246 (1989). 

106.  D. Price, and D. Allman.: Hydrothermal Synthesis of Zinc Oxide Nanowires 

on Kevlar Using ALD and Sputtered ZnO Seed Layers. MRS Proc. 1178, 6 

(2009). 

107.  S. E. Atanasov, C. J. Oldham, K. A. Slusarski, J. Taggart-Scarff, S. A. Sherman, 

K. J. Senecal, S. F. Filocamo, Q. P. McAllister, E. D. Wetzel, and G. N. Parsons.: 

Improved Cut-Resistance of Kevlar® Using Controlled Interface Reactions 

during Atomic Layer Deposition of Ultrathin (<50 Å) Inorganic Coatings. J. 

Mater. Chem. A 2, 17371 (2014). 

108.  K. Gregorczyk, and M. Knez.: Hybrid Nanomaterials through Molecular and 

Atomic Layer Deposition: Top down, Bottom up, and in-between Approaches 

to New Materials. Prog. Mater. Sci. 75, 1 (2016). 

109.  D. S. Sholl, and J. A. Steckel.: Density Functional Theory; A Practical Introduction; 

Jhon Wiley & Sons, (2002). 

110.  F. Furche, R. Ahlrichs, C. Hättig, and W. Klopper.: Turbomole. Wiley 

Interdiscip. Rev. Comput. Mol. Sci. 4, 91 (2014). 

111.  R. Ahlrichs.: Efficient Evaluation of Three-Center Two-Electron Integrals over 

Gaussian Functions. Phys. Chem. Chem. Phys. 6, 5119 (2004). 

112.  F. Weigend.: Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. 

Chem. Phys. 8, 1057 (2006). 

113.  O. Treutler, and R.Ahlrichs.: Efficient Molecular Numerical Integration 

Schemes. J. Chem. Phys. 102, 346 (1995). 

114.  K. Eichkorn, F. Weigend, O. Treutler, and R.Ahlrichs.: Auxiliary Basis Sets for 

Main Row Atoms and Transition Metals and Their Use to Approximate 

Coulomb Potentials. Theor. Chem. Acc. 97, 119 (1997). 



  Bibliography 
 

   97 

115.  C. Y. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch.: Using Redundant 

Internal Coordinates to Optimize Equilibrium Geometries and Transition 

States. J. Comput. Chem. 17, 49 (1996). 

116.  J. T. Tanskanen, C. Hägglund, and S. F. Bent.: Correlation Growth 

Characteristics in Atomic Layer Deposition with Precursor Molecular 

Structure: The Case of Zinc Tin Oxide. Chem. Mat. 556, 186 (2014). 

117.  T. Weckman, and K. Laaonen.: Atomic Layer Deposition of Zinc Oxide: 

Diethyl Zinc Reactions and Surface Saturation from First-Principle. J. Phys. 

Chem. C 120, 21460 (2016). 

118.  Q. Shi, L. Ni, Y. Zhang, X. Feng, Q. Chang, J. Meng, X. Li, S. Yuan, J. Li, M. 

Tian, J. Lin, and B. V. Bruggen.: Poly(p-Phenylene Terephthamide) Embedded 

in a Polysulfone as the Substrate for Improving Compaction Resistance and 

Adhesion of a Thin Film Composite Polyamide Membrane. J. Mater. Chem. A 5, 

13610 (2017). 

119.  P. Wang, K. Wang, J. Zhang, and G. Luo.: Preparation of Poly(p-Phenylene 

Terephthalamide) in a Microstructured Chemical System. Rsc Adv. 5, 64055 

(2015). 

120.  S. Cai, and B. R. Singh.: Identification of Beta -Turn and Random Coil Amide 

III Infrared Bands for Secondary Structure Estimation of Proteins. Biophys. 

Chem. 80, 7 (1999). 

121.  S. Cai, and B. R. Singh.: A Distinct Utility of the Amide III Infrared Band for 

Secondary Structure Estimation of Aqueous Protein Solutions Using Partial 

Least Squares Methods. Biochemistry 43, 2541 (2004). 

122.  B. R. Singh, D. B. Deoliveira, F. Fu, and M. P. Fuller.: Fourier Transform 

Infrared Analysis of Amide III Bands of Proteins for the Secondary Structure 

Stimation. Biomol. Spectrosc. III 1890, 47 (1993). 

123.  G. M. Cai, and W. D. Yu.: Study on the Thermal Degradation of High 

Performance Fibers by TG/FTIR and Py-GC/MS. J. Therm. Anal. Calorim. 104, 

757 (2011). 

124.  G. Kim, S. Lee, M. Knez, and P. Simon.: Single Phase ZnO Submicrotubes as a 

Replica of Electrospun Polymer Fi Ber Template by Atomic Layer Deposition. 

Thin Solid Films 562, 291 (2014). 



Bibliography 
 

 98 

125.  X. Liu, and W. Yu.: Evaluating the Thermal Stability of High Performance 

Fibers by TGA. J. Appl. Polym. Sci. 99, 937 (2006). 

126.  H. Wang, H. Xie, Z. Hu, D. Wu, and P. Chen.: The Influence of UV Radiation 

and Moisture on the Mechanical Properties and Micro-Structure of Single 

Kevlar Fibre Using Optical Methods. Polym. Degrad. Stab. 97, 1755 (2012). 

127.  X. Liu, W. Yu, and N. Pan.: Evaluation of High Performance Fabric Under 

Light Irradiation. J. Appl. Polym. Sci. 120, 552 (2011). 

128.  W. Chen, X. Qian, X. He, and J. Liu.: Enhanced Ultraviolet Resistance of 

Kevlar Fibers with TiO2 Films. Reliab. Maintainab. Saf. 9th Int. Conf. 1267 (2011). 

129.  G. N. Parsons, S. E. Atanasov, E. C. Dandley, C. K. Devine, B. Gong, J. S. Jur, 

K. Lee, C. J. Oldham, Q. Peng, J. C. Spagnola, and P. S. Williams.: Mechanisms 

and Reactions during Atomic Layer Deposition on Polymers. Coord. Chem. Rev. 

257, 3323 (2013). 

130.  J. C. Spagnola, B. Gong, S. A. Arvidson, J. S. Jur, S. A. Khan, and G. N. 

Parsons.: Surface and Sub-Surface Reactions during Low Temperature 

Aluminium Oxide Atomic Layer Deposition on Fiber-Forming Polymers. J. 

Mater. Chem. 20, 4213 (2010). 

131.  L. Konopasek, and J. W. S. Hearle.: Tensile Fatigue Behaviour of Para-

Orientated Aramid Fibres and Their Fracture Morphology. J. Appl. Polym. Sci. 

21, 2791 (1977). 

132.  Y. W. Mai, and F. Castino.: Fracture Toughness of Kevlar-Epoxy Composites 

with Controlled Interfacial Bonding. J. Mater. Sci. 19, 1638 (1984). 

133.  A. R. Bunsell.: The Tensile and Fatigue Behaviour of Kevlar-49 (PRD-49) Fibre. 

J. Mater. Sci. 10, 1300 (1975). 

134.  T. G. Mcnaughton, and K. W. Horch.: Metallized Polymer Fibers as Leadwires 

and Intrafascicular Microelectrodes. J. Neurosci. Methods 70, 103 (1996). 

135.  A. Schwarz, J. Hakuzimana, A. Kaczynska, J. Banaszczyk, P. Westbroek, E. 

McAdams, G. Moody, Y. Chronis, G. Priniotakis, G. De Mey, D. Tseles, and L. 

Van Langenhove.: Gold Coated Para-Aramid Yarns through Electroless 

Deposition. Surf. Coatings Technol. 204, 1412 (2010). 

136.  Y. Qin, X. Wang, and Z. L. Wang.: Microfibre-Nanowire Hybrid Structure for 

Energy Scavenging. Nature 451, 809 (2008). 



  Bibliography 
 

   99 

137.  Y. Li, X. Y. Cheng, M. Y. Leung, J. Tsang, X. M. Tao, and M. C. W. Yuen.: A 

Flexible Strain Sensor from Polypyrrole-Coated Fabrics. Synth. Met. 155, 89 

(2005). 

138.  P. N. Bartlett, P. B. M. Archer, and S. K. Ling-Chung.: Conducting Polymer 

Gas Sensors Part I: Fabrication and Characterization. Sensors and Actuators 19, 

125 (1989). 

139.  J. Wu, D. Zhou, C. O. Too, and G. G. Wallace.: Conducting Polymer Coated 

Lycra. Synth. Met. 155, 698 (2005). 

140.  F. Kayaci, C. Ozgit-Akgun, I. Donmez, N. Biyikli, and T. Uyar.: Polymer-

Inorganic Core-Shell Nanofibers by Electrospinning and Atomic Layer 

Deposition: Flexible Nylon-ZnO Core-Shell Nanofiber Mats and Their 

Photocatalytic Activity. ACS Appl. Mater. Interfaces 4, 6185 (2012). 

141.  B. Gong, Q. Peng, J. S. Na, and G. N. Parsons.: Highly Active Photocatalytic 

ZnO Nanocrystalline Rods Supported on Polymer Fiber Mats: Synthesis Using 

Atomic Layer Deposition and Hydrothermal Crystal Growth. Appl. Catal. A 

Gen. 407, 211 (2011). 

142.  H. R. Pant, D. R. Pandeya, K. T. Nam, W. il Baek, S. T. Hong, and H. Y. Kim.: 

Photocatalytic and Antibacterial Properties of a TiO2/Nylon-6 Electrospun 

Nanocomposite Mat Containing Silver Nanoparticles. J. Hazard. Mater. 189, 465 

(2011). 

143.  B. Muktha, G. Madras, T. N. Guru Row, U. Scherf, and S. Patil.: Conjugated 

Polymers for Photocatalysis. J. Phys. Chem. B 111, 7994 (2007). 

144.  X. Zheng, A. J. Cohen, P. Mori-Sánchez, X. Hu, and W. Yang.: Improving 

Band Gap Prediction in Density Functional Theory from Molecules to Solids. 

Phys. Rev. Lett. 107, 1 (2011). 

145.  U. Salzner, J. B. Lagowski, P. G. Pickup, and R. A. Poirier.: Design of Low 

Band Gap Polymers Employing Density Functional Theory-Hybrid 

Functionals Ameliorate Band Gap Problem. J. Comput. Chem. 18, 1943 (1997). 

146.  Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura, and Y. Ohya.: 

Photoconductivity of Ultrathin Zinc Oxide Films. J. Appl. Phys. 33, 6611 (1994). 

147.  G. Heiland.: Photoconductivity of Zinc Oxide as a Surface Phenomenon. J. 

Phys. Chem. Solids 22, 227 (1961). 



Bibliography 
 

 100 

148.  Q. Zhu, and C. Xie.: Thickness Dependent Photoelectric Responses of ZnO 

Nanoparticle Films. In Contributed Papers from Materials Science & Technology 

(MS&T) 2015; (2015); pp 1697–1704. 

149.  J. Yu, and X. Yu.: Hydrothermal Synthesis and Photocatalytic Activity of Zinc 

Oxide Hollow Spheres. Environ. Sci. Technol. 42, 4902 (2008). 

150.  W. Ho, J. C. Yu, and S. Lee.: Low-Temperature Hydrothermal Synthesis of S-

Doped TiO2 with Visible Light Photocatalytic Activity. J. Solid State Chem. 179, 

1171 (2006). 

151.  L. Zheng, Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, and J. Zhu.: 

Network Structured SnO[Sub 2]/ZnO Heterojunction Nanocatalyst with High 

Photocatalytic Activity. Inorg. Chem. 48, 1819 (2009). 

152.  J. Mu, C. Shao, Z. Guo, Z. Zhang, M. Zhang, P. Zhang, B. Chen, and Y. Liu.: 

High Photocatalytic Activity of ZnO-Carbon Nanofiber Heteroarchitectures. 

ACS Appl. Mater. Interfaces 3, 590 (2011). 

 

 

 

 



  List of publications 
 

   101 

List of publications 

 

 

1.  K. E. Gregorczyk, D. F. Pickup, M. G. Sanz, I. A. Irakulis, C. Rogero, and M. 

Knez.: Tuning the Tensile Strength of Cellulose through Vapor-Phase 

Metalation. Chem. Mater. 27, 181 (2015). 

 

2. L. Ruiz-Rubio, I. Azpitarte, N. García-Huete, J. M. Laza, J. L. Vilas, and L. M. 

León.: Solvent and Relative Humidity Effect on Highly Ordered Polystyrene 

Honeycomb Patterns Analyzed by Voronoi Tesselation. J. Appl. Polym. Sci. 133, 

1 (2016). 

 

3.  I. Azpitarte, A. Zuzuarregui, H. Ablat, L. Ruiz-Rubio, A. López-Ortega, S. D. 

Elliott, and M. Knez.: Suppressing the Thermal and Ultraviolet Sensitivity of 

Kevlar by Infiltration and Hybridization with ZnO. Chem. Mater. 29, 10068 

(2017). 

 

4.  M. Fenero, J. Palenzuela, I. Azpitarte, M. Knez, J. Rodríguez, and R. Tena-

Zaera.: Laponite-Based Surfaces with Holistic Self-Cleaning Functionality by 

Combining Antistatics and Omniphobicity. ACS Appl. Mater. Interfaces 9, 39078 

(2017). 

 

5.  I. Azpitarte, and M. Knez.: Vapor Phase Infiltration: From a Bioinspired 

Process to Technologic Application, a Prospective Review. MRS Commun. 1 

(2018). 

 

 

 

 

 



 

 102 

 

 

 



Acknowledgements 
 

   103 

Acknowledgements 

 

I am deeply grateful to my supervisor Prof. Mato Knez for all his kindness, 

help and support. Thank you very much for believing in me since the beginning and 

for being always willing to listen to my crazy ideas. You were always able to cheer 

me up in the toughest moments. A ten minutes talk with you has always been 

enough for not giving up. I would not be writing these final lines without your 

support. You taught me plenty of things, not only about science but also about life. 

This thesis is as mine as yours.  

 

I would also like to thank Dr. Ana Zuzuarregui for all the help and 

enthusiasm at the first steps of my thesis. Laborategian pasatutako ordu luzeak 

arintzea eskertzen dizut. Zugatik ez balitz, ez nituzke laginak prestatzen eta 

propietate mekanikoak neurtzen emandako arratsalde luzeak gaindituko. Eskerrik 

asko irakatsitako guztiagatik eta eskainitako laguntzagatik.  

 

I am really thankful to Dr. Leire Ruiz-Rubio for being always willing to help 

me. Has sido una persona clave en mi carrera desde mucho antes del doctorado. Me 

siento afortunada de haber contado con tu ayuda y apoyo desde el principio y no sé 

como agradecerte todo lo que has hecho por mí.  

 

I am also grateful to past and present members of the nanomaterials group for 

the great working atmosphere in the lab. I have to specially mention Mikel Beltrán 

and Sarai Garcia for the good moments we have shared in the lab.  Gracias Mikel por 

ser el mejor técnico que podía haber tenido. Siempre dispuesto a ayudar en todo lo 

que podías, has solucionado todos los inconvenientes que me han surgido. Y a ti 

Sarai gracias por las risas y conversaciones en el laboratorio y sobre todo gracias por 

estar siempre dispuesta a sentarte a tomar un café y escucharme. Eta Unai Carmona 

doktorea, ezin dot lankideetaz berba ein zu aipatu barik. Nanogunen pasatako 

urteak ezin dotaz zu barik imaginatu. Eskerrik asko regaliz infusio baten konpanian 



Acknowledgements 
 

 104 

eukindako momentu on guztiengatik. Eskerrik asko momentu txarrenetan gauzak 

erlatibizatzen erakusteagatik eta, batez be, eskerrik asko nire lagune izategatik.  

 

I also have to thank all nanopeople community for the great time I have had 

with all of you. The conversations and moments we have shared in the 

“hamaiketako” always made my day.  

 

Atal hau ezin dot amaitu, hartzen doten erabakia hartuta ere, beti ni 

laguntzeko prest dauzenak aipatu barik. Nire familia. Aita, Ama eta Irati badakit 

doktoretza egiten pasatu dotezan urte hauetan zuentzako ere momentu gogorrak 

egon direla. Eskerrik asko beti nire erabakiak babesteagatik, behar izan dotenean hor 

egoteagatik. Eskerrik asko niretzat zaila zan momentuetan ere, nitan sinisteagatik. 

Eskerrik asko honarte heltzen lagundu izanagatik. Zuri Izadi, noiz bait irakurriko 

dozun esperantzarekin, eskerrik asko zure besarkada bategaz dana konpontzeagatik.  

Azkenik, nire momentu txar gehienak ikusi eta jasan arren, hor jarraitzen deuenari. 

Mikel zuri, zelan eskertu dana beltz ikusten nebanean ere irribarre bat atarateko gai 

izatea. Eskerrik asko nire gora-beherak jasateagatik eta beti aurrera jarraitzeko 

indarra emoteagatik.   

 

Eskerrik asko bihotz-bihotzez. 

 

 

 

 

 

 

 

 



 

   105 

 


