Microsite es: . Grupo:
You are here

Projects at a glance

QuESTech - QUantum Electronics Science and TECHnology training

QuESTech (Project ID: 766025) is a consortium of 7 leading European research laboratories and 2 high-tech companies. Supported by the European Community, QuESTech will provide a challenging, state-of-the-art training for young researchers in the general field of experimental, applied, and theoretical quantum electronics. The main scientific topics include spintronics, molecular electronics, single electronics, transport in low-dimensional structures, and quantum thermodynamics.

HYCOAT - A European Training Network for Functional Hybrid Coatings by Molecular Layer Deposition

Thin films of hybrid materials engineered at the molecular scale can enable breakthroughs in several economically and socially relevant technological application areas including packaging & encapsulation, electronics, batteries and biomedical applications. With self-limiting binary reactions, Molecular Layer Deposition (MLD) is the ideal deposition technique for growing ultra-thin, uniform, conformal hybrid films with precise and flexible control over the film thickness and molecular-scale chemical composition. The key objective of HYCOAT is to create a group of exceptionally well-trained young researchers who have a deep understanding of all aspects of MLD technology, as well as broad vision on the application potential of hybrid coatings.

2D-INK - Redesigning 2D Materials for the Formulation of Semiconducting Inks

Developing inks of novel 2D semiconducting materials for low-cost large-area fabrication processes.

MARINA - Marine Knowledge Sharing Platform for Federating Responsible Research and Innovation Communities

The objective of the MARINA project is to accomplish the resolution of marine related issues and problems following the responsible research and innovation principle, creating an all-inclusive Knowledge Sharing Platform, together with federating activities such as Mobilisation and Mutual Lerning workshops and exhibitions. The expected outcome of the Work Programme is a clear improvement of the integration of society in science and innovation.

E-CAM - An e-infrastructure for software, training and consultancy in simulation and modelling

E-CAM will create, develop and sustain a European infrastructure for computational science applied to simulation and modelling of materials and of biological processes of industrial and societal importance. Building on the already significant network of 15 CECAM centres across Europe and the PRACE initiative, it will create a distributed, sustainable centre for simulation and modelling at and across the atomic, molecular and continuum scales.

InfeMec

We will use bioinformatics and high-throughout screening techniques to identify molecules that alter the nanomecanichs of anchoring proteins and that can potentially be used to prevent infections.

ANTOMIC - Quantum nanoantennas for atomic-scale optical spectroscopy

The ANTOMIC project (Quantum nanoantennas for atomic-scale optical spectroscopy) studies the quantum limits of light emission and scattering by metallic and molecular nanowires of nanometer sizes. We will identify their plasmon resonances and correlate them with their quantized electronic structure.

ElectronStopping - Electronic stopping power from first principles

The Electronstopping project is focused on the creation of a flexible and general method that will make possible to accurately calculate and analyze the electronic stopping power in a large variety of materials.

Graphene-Based Revolutions in ICT and Beyond

The Graphene Flagship is the EU’s biggest research initiative ever, and, according to the European Commission, ‘history’s greatest distinction for excellent research’. With a budget of one billion EUR, the Graphene Flagship is tasked with taking graphene from the realm of academic laboratories into the European society in the space of ten years, thus generating economic growth, new jobs, and new opportunities for Europeans as both investors and employees.

ARTEN - Artificial Enzymes: Protein-Encapsulated Inorganic Nanoparticles

The ARTEN project aims at gaining knowledge on enzyme-analogue catalytic reactions with various inorganics as well as approaching application fields of such composite inorganic enzymes.

Pages

x
We use third party cookies to improve our services and tailor the website to your surfing habits. By continuing to browse the site, you are agreeing to our use of cookies policy. Further information on the use of cookies.