Proyectos

Projects at a Glance

  • SYNERFUN - Synergistic Surface Functionalization for Advanced Diagnistic, Catalytic and Packaging Materials

    This project aims to leverage our expertise in surface functionalization and hybrid material fabrication to develop new systems for diagnostics, energy conversion, and food packaging. Our capabilities include synthesizing 0D materials (nanoparticles) and 2D materials (atomic scale thin films) and modifying surfaces with hybrid materials to introduce or enhance chemical and physical properties. Our focus will be on developing innovative materials with exciting applications in biomedical diagnostics and therapies, and concepts for enhancing common polymers used for intelligent food packaging in the future.

  • ENSEMBLES3 Phase II - Centre of ExcelleNce for nanophotonicS, advancEd Materials and novel crystal growth-Based technoLogiEs

    The grand objective of the project is to create the Centre of Excellence ENSEMBLE3, which will focus on research excellence and innovation performance in the area of crystal growth-based technologies, novel functional materials with innovative electromagnetic properties, and applications in nanophotonics, optoelectronics and medicine.
  • LICONAMCO - Light-controlled nanomagnetic computation schemes

    Computation using nanomagnets could serve as a low-power alternative to existing CMOS technologies. Here, binary information is encoded into two stable magnetic configurations of single-domain nanomagnets.
  • 2DSTOP - Spin transport and spin-orbit phenomena in 2D materials

    We live in a technological world where usage of electronic devices for information technology is an integral part of everyday life. Present and future technological progress requires miniaturization of such devices, continuous improvement of their performances and decreasing of energy consumption.

  • SPRING - SPin Research IN Graphene

    The EU-funded H2020 project SPRING (project ID 863098) is focused on the development of new graphene-based magnetic components that contribute to the creation of faster and environmentally friendly electronic devices. This international research project is coordinated by CIC nanoGUNE (ES) in partnership with IBM (CH), University of Santiago de Compostela (ES), Technical University of Delft (NL) and University of Oxford (UK), and Donostia International Physics Center (ES).

  • NOVASPEC - Novel instrumentation and applications of IR & THz nano-spectroscopy

    The project aims to develop ultrahigh-resolution microscopy techniques using s-SNOM and nano-FTIR spectroscopy to map material properties and nanoscale light fields in novel materials and photonic devices. The main objectives include advancing the instrumentation, applying it for chemical characterization of polymers, and exploring polaritons in 2D materials for novel infrared detectors and sensors.

     

  • PHOTOTHERMAG - Nanomagnet logic via photothermal excitation of nanomagnetic networks

    The project explores a new concept of nanomagnetic logic devices based on optothermal activation of hybrid plasmonic-magnetic metamaterials to implement ultralow power, ultrafast, and optically controlled reconfigurable Boolean and neuromorphic/stochastic computation schemes. 

  • SCARFACE - Spin Control And Related effects at interFACES and heterostructures

    This project studied spin materials and processes for beyond-CMOS devices, with a special focus on spin-to-charge conversion (an effect that allows inserting and reading spin information in a circuit without the need of magnetic materials) and molecular spinterfaces (i.e., the way in which a molecular layer affects and it is affected by a ferromagnetic underlayer).

  • SURFNANOCUT - Knowledge based cutting for surface engineering of aeronautic and automotive materials: understanding the fundamentals of cutting process through micro-nano structure analysis

    The study of the microstructure of machined metal surfaces plays a key role in understanding the thermomechanical conditions at the tool/workpiece interface and allows us to pinpoint the driving forces that trigger microstructure formation processes. In this project, we are investigating these microstructural processes in a number of key materials for the aerospace and automotive industries: AISI 1045 steel, Inconel 718 and Aluminum 7475. The idea of the project is to understand the patterns of surface layer microstructure formation during the cutting process and use this knowledge to target improvements in the surface properties of the finished part by changing the cutting parameters.