Skip to main content
CIC nanoGUNE
  • en
  • es
  • eu

User account menu

  • Log in

Main Menu ES

  • nanoGUNE
    • At a Glance
    • Organization & Funding
    • People
    • Join us
    • Life
    • Newsroom
    • nanoPeople
  • Research
    • Research
    • Publications
    • Projects
    • External services
  • TechTransfer
    • TechTransfer
    • Start-ups
    • IP Portfolio
    • Strategic lines
    • External services
    • News & events
  • Training
    • Training
  • Society
    • Society
    • FAQ
    • News & events

User menu

  • Log in
  1. Home
  2. Projects
  3. 2DSTOP - Spin transport and spin-orbit phenomena in 2D materials

2DSTOP - Spin transport and spin-orbit phenomena in 2D materials

2DSTOP - Spin transport and spin-orbit phenomena in 2D materials
Funding Program
EU - Horizon 2020
MSCA - Individual Fellowship
Coordinator
CIC nanoGUNE - Spain
Call
H2020-MSCA-IF-2017
Project ID
794982
PI at nanoGUNE
Safeer Chenattukuzhiyil (Supervisor: Fèlix Casanova)
From
03/01/2019
To
02/28/2021
Total funding
170,121.60€
Web
cordis.europa.eu/project/rcn/215308_en.html
Research group
Nanodevices

We live in a technological world where usage of electronic devices for information technology is an integral part of everyday life. Present and future technological progress requires miniaturization of such devices, continuous improvement of their performances and decreasing of energy consumption.

 Spintronics, a growing research field based on the manipulation of the spin of the electrons, offers devices that fulfil these needs. However, a new generation of proposed spintronic devices are yet to be realized due to the lack of a tuneable spin transport channel. The major obstacle to build such channel is that the transport and the manipulation of spins (which require weak and strong spin-orbit coupling, respectively) in the same material are mutually exclusive. 2DSTOP addresses this problem by exploiting the unconventional spin-dependent properties of the transition metal dichalcogenides. In these two dimensional (2D) layered materials, electrically tuneable spin transport in the presence of strong spin-orbit coupling is theoretically predicted. 2DSTOP envisions the experimental realization of such predictions. Combining these materials with other 2D materials such as graphene and hexagonal boron nitride, this proposal plans to investigate not only the spin transport, but also some of the exotic spin-orbit-related phenomena. This way, the project aims at acquiring scientific knowledge with potential technological applications to be useful for both academia and industry. Moreover, the ultimate goal of 2DSTOP is to offer high-quality interdisciplinary research training for an aspiring young researcher helping him to build a promising scientific research career.

Partners

CIC nanoGUNE - Spain (Coordinator)

  • whatsapp
  • facebook
  • twitter
  • linkedin
  • print

By funding program

  • - Any -
  • EU - FP7
  • EU - Horizon Europe
  • FLAG-ERA
  • EU - Horizon 2020
  • ERA.NET
  • FET Open
  • Initial Training Network (ITN)
  • MSCA - Individual Fellowship
  • Spanish Government
  • CIC nanoGUNE
  • Tolosa Hiribidea, 76
  • E-20018 Donostia / San Sebastian
  • +34 943 574 000 · nano@nanogune.eu
  • Facebook Twitter Youtube Linkedin Instagram Subscribe to our Newsletter

Menú pie principal

  • nanoGUNE
  • Research
  • TechTransfer
  • Training
  • Society
  • nanoPeople

Menú pie servicios

  • External services
  • Publications
  • Seminars
  • Join us
  • Newsroom
  • Contractor profile
  • Corporate Compliance

Menú pie grupos

  • Nanomagnetism
  • Nanooptics
  • Self Assembly
  • Nanodevices

Menú pie grupos 2

  • Electron Microscopy
  • Theory
  • Nanomaterials
  • Nanoimaging
  • Nanoengineering

Funded by

  • EJ/GV
  • Diputación
  • FEDER
  • FEDER
  • Ministerio de Ciencia e Innovación

Member of

  • BRTA
  • SOMM

Distinctions

  • Distinción de Excelencia María de Maeztu 2022-2025
  • Excellence Research
  • UNE-166002

Menú legales

  • Accesibility
  • Legal notice
  • Privacy policy
  • Cookies policy
  • Confidentiality policy
by ACC