Pasar al contenido principal
dd
CIC nanoGUNE
  • en
  • es
  • eu

User account menu

  • Iniciar sesión

Main Menu ES

  • nanoGUNE
    • De un vistazo
    • Organización y Financiación
    • Personas
    • Únete
    • Vive
    • Sala de prensa
    • nanoPeople
  • Investigación
    • Investigación
    • Publicaciones
    • Proyectos
    • Servicios externos
  • Transferencia
    • Transferencia
    • Start-ups
    • Cartera PI
    • Industry collaborative research positions
    • Strategic lines
    • Servicios externos
    • Noticias
  • Formación
    • Master projects
    • Bachelor Final Projects
    • Prácticas de verano
    • Programa de doctorado
  • Sociedad

User menu

  • Iniciar sesión
  1. Inicio
  2. Investigadores de nanoGUNE lideran una investigación sobre el grafeno portada en Nature Photonics

Investigadores de nanoGUNE lideran una investigación sobre el grafeno portada en Nature Photonics

15/04/2016

Investigadores del CIC nanoGUNE, en colaboración con ICFO y Graphenea, han visualizado por primera vez la luz infrarroja en nanoestructuras de grafeno. Este trabajo abre el camino para nuevas posibilidades de fotodetectores, sensores y otros nanodispositivos optoelectrónicos y fotónicos eficientes y extraordinariamente pequeños. El trabajo ocupa la portada del mes de abril en la prestigiosa revista Nature Photonics.

La constante búsqueda de tecnologías compactas ha planteado una nueva era de la nanociencia. Los teléfonos móviles inteligentes, los ordenadores más rápidos, las herramientas médicas más sensibles y fiables, entre otros, requieren cada vez un mayor número de elementos electrónicos sofisticados en sus chips incorporados. Los bloques ópticos, debido a que su operación es mucho más rápida, se ven ahora como una alternativa a los diodos semiconductores y transistores. Sin embargo, aunque la luz es muy rápida, todavía no se ajusta muy bien a los pequeños volúmenes alcanzables a través de la nanoingeniería. De hecho, uno de los fundamentos físicos impone una gran limitación de la propagación de la luz: no se puede comprimir en un espacio más pequeño que la mitad de su longitud de onda, que es mucho más grande que los bloques de construcción electrónicos en nuestros dispositivos electrónicos. Por esa razón, las formas de concentrar la luz para propagar a través de los materiales a nanoescala son muy exigentes.

La longitud de onda de la luz captada por una lámina de grafeno puede ser 100 veces menor que la luz que se propaga libremente en el espacio. Por consiguiente, esta luz que se propaga por la lámina de grafeno —llamada plasmón de grafeno— requiere mucho menos espacio. Esta es la razón por la que los dispositivos fotónicos pueden ser mucho más pequeños. Las tecnologías basadas en el grafeno hacen posible los nanodispositivos ópticos extremadamente pequeños.

La luz atrapada dentro de las diminutas láminas de grafeno (nanodiscos y nanorectágulos bidimensionales) se ha visualizado por los investigadores con la ayuda de un microscopio de campo cercano. Las imágenes tomadas del microscopio han sido interpretadas con la ayuda de ciertas simulaciones por ordenador y se ha descubierto una familia rica de ondas ultracomprimidas de plasmones dentro de las nanoláminas. Estas ondas son muy sensibles a las formas de las nanoláminas y pueden ser manipuladas de manera eficiente por el cambio de la tensión aplicada directamente a las nanoláminas. "Nuestros resultados abren nuevas vías a las tecnologías basadas en el grafeno, que podrían dar lugar a nanodispositivos ópticos eficientes y de baja potencia”, resume el investigador Ikerbasque Rainer Hillenbrand, que ha dirigido el proyecto.

Noticia relacionada: https://www.nanogune.eu/newsroom/nanolight-edge

 

For further information:

Publicación original

A. Y. Nikitin, P. Alonso-González, S. Vélez, S. Mastel, A. Centeno, A. Pesquera, A. Zurutuza, F. Casanova, L. E. Hueso, F. H. L. Koppens, and R. Hillenbrand “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators” Nature Photonics 10, 239 (2016), DOI: 10.1038/nphoton.2016.44

  • whatsapp
  • facebook
  • twitter
  • linkedin
  • print

Noticias relacionadas

  • 06/05/2025

    NanoGUNE inicia la construcción de la Torre Cuántica -The Quantum Tower-

  • 01/04/2025

    Donostia, capital de la espintrónica y la orbitrónica

  • 14/02/2025

    Review Article Highlights 25 Years of Modern Near-field Optical Nanoimaging

  • 11/02/2025

    Scientists synthesize 2D polyaniline crystal with unique metallic out-of-plane conductivity

  • 07/02/2025

    Emakumeak Zientzian subraya el poder de cada pequeña acción hacia la igualdad

  • CIC nanoGUNE
  • Tolosa Hiribidea, 76
  • E-20018 Donostia / San Sebastian
  • +34 943 574 000 · nano@nanogune.eu
  • Facebook Twitter Youtube Linkedin Instagram Subscribe to our Newsletter

Menú pie principal

  • nanoGUNE
  • Investigación
  • Transferencia
  • Formación
  • Sociedad
  • nanoPeople

Menú pie servicios

  • Servicios externos
  • Publicaciones
  • Seminarios
  • Únete
  • Sala de prensa
  • Perfil del contratante
  • Corporate Compliance

Menú pie grupos

  • Nanomagnetismo
  • Nanoóptica
  • Autoensamblado
  • Nanobiosistemas
  • Nanodispositivos
  • Microscopía Electrónica

Menú pie grupos 2

  • Teoría
  • Nanomateriales
  • Microscopía de Detección Cuántica
  • Nanoingeniería
  • Hardware Cuántico

Funded by

  • EJ/GV
  • Diputación
  • FEDER
  • FEDER
  • Ministerio de Ciencia e Innovación

Member of

  • BRTA
  • SOMM

Distinctions

  • Distinción de Excelencia María de Maeztu 2022-2025
  • Excellence Research
  • UNE-166002

Menú legales

  • Accesibilidad
  • Aviso Legal
  • Política de privacidad
  • Política de cookies
  • Política de confidencialidad
by ACC