Pasar al contenido principal
dd
CIC nanoGUNE
  • en
  • es
  • eu

User account menu

  • Iniciar sesión

Main Menu ES

  • nanoGUNE
    • De un vistazo
    • Organización y Financiación
    • Personas
    • Únete
    • Vive
    • Sala de prensa
    • nanoPeople
  • Investigación
    • Investigación
    • Publicaciones
    • Proyectos
    • Servicios externos
  • Transferencia
    • Transferencia
    • Start-ups
    • Cartera PI
    • Industry collaborative research positions
    • Strategic lines
    • Servicios externos
    • Noticias
  • Formación
    • Master projects
    • Bachelor Final Projects
    • Prácticas de verano
    • Programa de doctorado
  • Sociedad

User menu

  • Iniciar sesión
  1. Inicio
  2. PhD Thesis: Self-assembly and optical properties of gold nanoparticle superlattices for surface-enhanced Raman spectroscopy

PhD Thesis: Self-assembly and optical properties of gold nanoparticle superlattices for surface-enhanced Raman spectroscopy

07/06/2021

Mathias Charconnet, early stage researcher of the Nanoengineering Group at nanoGUNE, has defended his PhD thesis Today at the University of the Basque Country. 

MATHIAS CHARCONNET

The thesis, entitled Self-assembly and optical properties of gold nanoparticle superlattices for surface-enhanced Raman spectroscopy, has been supervised by Dr. Andreas Seifert (CIC nanoGUNE) and Dr. Luis M. Liz-Marzán (CIC biomaGUNE). 

About the thesis

Due to their remarkable ability to confine light to the nanoscale, plasmonic nanostructures are ideal platforms for ultrasensitive spectroscopy techniques, such as surface-enhanced Raman scattering (SERS) spectroscopy. SERS has emerged as a technique of choice for the monitoring of low concentrations of chemicals and biological markers. Therefore, the fabrication of new optimized plasmonic substrates for SERS is essential for the detection of even lower concentrations of molecules. High and efficient SERS signals typically demands a match between the plasmon resonance wavelength and the Raman laser excitation wavelength. Plasmon resonances can be tailored through the nanostructure's shape or material. Particularly, in periodically arranged nanoparticles, i.e. plasmonic superlattices, the  plasmon  resonance  can be tuned  through changes in the lattice  period. In this context, the overall goal of this thesis is to fabricate and study the plasmonic properties of highly regular gold nanoparticle superlattices made through self-assembly, with the aim of optimizing their SERS performance.

  • whatsapp
  • facebook
  • twitter
  • linkedin
  • print

Noticias relacionadas

  • 06/05/2025

    NanoGUNE inicia la construcción de la Torre Cuántica -The Quantum Tower-

  • 01/04/2025

    Donostia, capital de la espintrónica y la orbitrónica

  • 14/02/2025

    Review Article Highlights 25 Years of Modern Near-field Optical Nanoimaging

  • 11/02/2025

    Scientists synthesize 2D polyaniline crystal with unique metallic out-of-plane conductivity

  • 07/02/2025

    Emakumeak Zientzian subraya el poder de cada pequeña acción hacia la igualdad

  • CIC nanoGUNE
  • Tolosa Hiribidea, 76
  • E-20018 Donostia / San Sebastian
  • +34 943 574 000 · nano@nanogune.eu
  • Facebook Twitter Youtube Linkedin Instagram Subscribe to our Newsletter

Menú pie principal

  • nanoGUNE
  • Investigación
  • Transferencia
  • Formación
  • Sociedad
  • nanoPeople

Menú pie servicios

  • Servicios externos
  • Publicaciones
  • Seminarios
  • Únete
  • Sala de prensa
  • Perfil del contratante
  • Corporate Compliance

Menú pie grupos

  • Nanomagnetismo
  • Nanoóptica
  • Autoensamblado
  • Nanobiosistemas
  • Nanodispositivos
  • Microscopía Electrónica

Menú pie grupos 2

  • Teoría
  • Nanomateriales
  • Microscopía de Detección Cuántica
  • Nanoingeniería
  • Hardware Cuántico

Funded by

  • EJ/GV
  • Diputación
  • FEDER
  • FEDER
  • Ministerio de Ciencia e Innovación

Member of

  • BRTA
  • SOMM

Distinctions

  • Distinción de Excelencia María de Maeztu 2022-2025
  • Excellence Research
  • UNE-166002

Menú legales

  • Accesibilidad
  • Aviso Legal
  • Política de privacidad
  • Política de cookies
  • Política de confidencialidad
by ACC