Pasar al contenido principal
dd
CIC nanoGUNE
  • en
  • es
  • eu

User account menu

  • Iniciar sesión

Main Menu ES

  • nanoGUNE
    • De un vistazo
    • Organización y Financiación
    • Personas
    • Únete
    • Vive
    • Sala de prensa
    • nanoPeople
  • Investigación
    • Investigación
    • Publicaciones
    • Proyectos
    • Servicios externos
  • Transferencia
    • Transferencia
    • Start-ups
    • Cartera PI
    • Industry collaborative research positions
    • Strategic lines
    • Servicios externos
    • Noticias
  • Formación
    • Master projects
    • Bachelor Final Projects
    • Prácticas de verano
    • Programa de doctorado
  • Sociedad

User menu

  • Iniciar sesión
  1. Inicio
  2. Nanoóptica
  3. Review Article Highlights 25 Years of Modern Near-field Optical Nanoimaging

Review Article Highlights 25 Years of Modern Near-field Optical Nanoimaging

14/02/2025

A newly published review article in Nature Reviews Materials highlights the groundbreaking impact of scattering-type scanning near-field optical microscopy (s-SNOM), a technique that surpasses the diffraction limit to achieve nanoscale optical imaging across a broad spectral range. Authored by leading experts in the field, the review traces the evolution of s-SNOM and its expanding applications in nanophotonics, materials science, and quantum research.

half
SNOM at nanoGUNE

Conventional optical microscopy is constrained by the diffraction limit, preventing the visualization of features smaller than half the illumination wavelength. s-SNOM overcomes this barrier by utilizing an atomic force microscope (AFM) tip illuminated with light from the visible to the terahertz range. By capturing elastically scattered light from the tip while scanning a sample, s-SNOM achieves an extraordinary resolution of 10 nanometers—independent of the illumination wavelength.

SNOM applicationsThe foundation of SNOM based on light scattering at AFM tips was laid in the 1990s, but early implementations suffered from strong background signals, limiting the reliability of the images. In 2000, Rainer Hillenbrand, first author of the review article, together with Fritz Keilmann, introduced modern s-SNOM instrumentation utilizing interferometric detection and higher harmonic signal demodulation. These advancements eliminated background signals, making s-SNOM a reliable and widely adopted technique. Hillenbrand, since 2008 an Ikerbasque Research Professor and Nanooptics group leader at CIC nanoGUNE, also played a key role in the commercialization of s-SNOM as a co-founder of the company Neaspec (now part of Attocube Systems), enabling its widespread adoption in academia and industry. Today, s-SNOM is an essential tool for exploring challenges in nanotechnology, quantum materials, and biological systems.

The review provides an in-depth discussion of the principles underlying s-SNOM and its unique capabilities in label-free imaging of diverse materials. It explores the technique’s sensitivity to plasmons, phonons, and excitons, allowing for precise characterization of electronic, chemical, and structural properties at the nanoscale. Additionally, the article highlights recent advancements that extend s-SNOM’s applicability under extreme conditions, such as cryogenic temperatures, external fields, and liquid environments, further broadening its relevance for fundamental and applied research.

This comprehensive review underscores how s-SNOM continues to push the boundaries of optical nanoimaging, offering unparalleled insights into the nanoscopic world. As the field advances, the technique is expected to play a crucial role in next-generation scientific and technological breakthroughs.

For further information:

R. Hillenbrand, Y. Abate, M. Liu, X. Chen, and D. N. Basov

Nature Review Materials (2025)

Visible-to-THz near-field nanoscopy

Tags
SNOM
  • whatsapp
  • facebook
  • twitter
  • linkedin
  • print

Noticias relacionadas

  • 27/10/2025

    "LA NANOTECNOLOGÍA PROMETE IMPORTANTES AVANCES EN MEDICINA"

  • 22/10/2025

    Milla Cuántica: un recorrido por la investigación en física cuántica en Donostia

  • 20/10/2025

    La IA ayuda a decodificar cómo se construyen los minerales en la naturaleza

  • 20/10/2025

    Sir John Pendry recibe la Medalla Copley de la Royal Society

  • 14/10/2025

    Inauguración del ordenador cuántico IBM-Basque Country en Donostia

  • CIC nanoGUNE
  • Tolosa Hiribidea, 76
  • E-20018 Donostia / San Sebastian
  • +34 943 574 000 · nano@nanogune.eu
  • Facebook Twitter Youtube Linkedin Instagram Subscribe to our Newsletter

Menú pie principal

  • nanoGUNE
  • Investigación
  • Transferencia
  • Formación
  • Sociedad
  • nanoPeople

Menú pie servicios

  • Servicios externos
  • Publicaciones
  • Seminarios
  • Únete
  • Sala de prensa
  • Perfil del contratante
  • Corporate Compliance

Menú pie grupos

  • Nanomagnetismo
  • Nanoóptica
  • Autoensamblado
  • Nanobiosistemas
  • Nanodispositivos
  • Microscopía Electrónica

Menú pie grupos 2

  • Teoría
  • Nanomateriales
  • Microscopía de Detección Cuántica
  • Nanoingeniería
  • Hardware Cuántico

Funded by

  • EJ/GV
  • Diputación
  • FEDER
  • FEDER
  • Ministerio de Ciencia e Innovación

Member of

  • BRTA
  • SOMM

Distinctions

  • Distinción de Excelencia María de Maeztu 2022-2025
  • Excellence Research
  • UNE-166002

Menú legales

  • Accesibilidad
  • Aviso Legal
  • Política de privacidad
  • Política de cookies
  • Política de confidencialidad
by ACC