Skip to main content
dd
CIC nanoGUNE
  • en
  • es
  • eu

User account menu

  • Sartu

Main Menu ES

  • nanoGUNE
    • Hitz bitan
    • Antolakuntza eta finantzaketa
    • Pertsonak
    • Bat egin
    • Bizi
    • Prentsa-bulegoa
    • nanoPeople
  • Ikerketa
    • Ikerketa
    • Argitalpenak
    • Proiektuak
    • Kanpo-zerbitzuak
  • Transferentzia
    • Transferentzia
    • Enpresa berriak
    • PI Zorroa
    • Industry collaborative research positions
    • Strategic lines
    • Kanpo-zerbitzuak
    • Albisteak
  • Formakuntza
    • Master projects
    • Gradu amaierako proiektuak
    • Udako praktikaldiak
    • Doktoretza programa
  • Gizartea

User menu

  • Sartu
  1. Azala
  2. Artificial atomic scale materials: discovering how electrons fatten!

Artificial atomic scale materials: discovering how electrons fatten!

2019/05/22

A single and isolated electron has a clear electrical charge, magnetic moment and mass, and its free movement can be precisely predicted. Spanish scientists fabricated a nanoscale artificial material manipulating atoms one after the other and discovered that electros around are very heavier. Heavy electrons are promising particles which endow of new functionalities to novel materials. This study is the result of an international collaboration leaded by the Instituto de Nanociencia de Aragón and the Instituto de Ciencia de Materiales de Aragón (ICMA), in which scientists at CIC nanoGUNE participated, together with members of the Centro de Física de Materiales (CFM) in San Sebastian, and the Charles University and Czech Academy of Sciences, in the Check Republic.

The study has been publish in the journal Nature Communications and shows that it is possible to fabricate artificial materials, one by one, to produce electronic and magnetic properties that do not exist in any material found in nature. In this case, the scientists observed that conventional electrons in a metal becomes heavy electrons (the technical denomination is heavy fermions) in the proximity of ordered atomic structures of magnetic atoms (cobalt) arranged over the surface. Heavy fermions are electronic states that appear when normal electrons, which are intrinsically magnetic, are attracted towards the structure of magnetic atoms periodically arranged.

The researchers employed a Scanning Tunnelling Microscope at low temperatures to study the shape of this electronic states and demonstrate that they correspond to the emergence of a heavy fermion state. This is te first time that te formation of such novel state of matter is monitored by constructing the artificial material one atom at a time. “We found that the magnetic fingerprint of this electrons extended delocalized along a magnetic chain of up to 20 cobalt atoms, allowing us to demonstrate that they correspond to a new electronic state of matter, and provide a theoretical model for creation of heavy electrons that could be extended to other systems, thus boosting the search of artificial materials with novel functional properties.” Explains David Serrate, scientists in ICMA and leader of this study.

The exotic electronic and magnetic properties of this materials cause great expectations in their possible use for applications such a sensors, superconducting devices or to explore critical quantum proceses. Heavy electrons behave drastically different than normal electrons, because their response to temperature, pressure of magnetic fields scales with the mass of the electrons. Additionally, the observation of these novel states inspire new theoretical models that allows us to explore the quantum limits of matter and design new artificial materials with customized electronic behaviour.

For further information:

Real space manifestations of coherent screening in atomic scale

Kondo lattices María Moro-Lagares, Richard Korytár, Marten Piantek, Roberto Robles, Nicolás Lorente, Jose I. Pascual, M. Ricardo Ibarra & David Serrate

Nature Communications 10, 2211 (2019)

Tags
José Ignacio Pascual
Electronic transport
  • whatsapp
  • facebook
  • twitter
  • linkedin
  • print

Lotutako albisteak

  • 2025/06/05

    SOMMa 2025: bikaintasun zientifikoaren kudeaketa Donostiara iritsi da

  • 2025/05/06

    NanoGUNEren Dorre Kuantikoa —The Quantum Tower— eraikitzen hasi da

  • 2025/04/01

    Donostia, spintronikaren eta orbitronikaren hiriburu

  • 2025/02/14

    Review Article Highlights 25 Years of Modern Near-field Optical Nanoimaging

  • 2025/02/11

    Scientists synthesize 2D polyaniline crystal with unique metallic out-of-plane conductivity

  • CIC nanoGUNE
  • Tolosa Hiribidea, 76
  • E-20018 Donostia / San Sebastian
  • +34 943 574 000 · nano@nanogune.eu
  • Facebook Twitter Youtube Linkedin Instagram Subscribe to our Newsletter

Menú pie principal

  • nanoGUNE
  • Ikerketa
  • Transferentzia
  • Formakuntza
  • Gizartea
  • nanoPeople

Menú pie servicios

  • Kanpo-zerbitzuak
  • Argitalpenak
  • Mintegiak
  • Bat egin
  • Prentsa-bulegoa
  • Kontratatzailearen profila
  • Corporate Compliance

Menú pie grupos

  • Nanomagnetismoa
  • Nanooptika
  • Self AssemblyAutomihiztadura
  • Nanobiosistemak
  • Nanogailuak
  • Mikroskopia Elektronikoa

Menú pie grupos 2

  • Teoria
  • Nanomaterialak
  • Detekzio Kuantikoko Mikroskopia
  • Nanoingeniaritza
  • Hardware Kuantikoa

Funded by

  • EJ/GV
  • Diputación
  • FEDER
  • FEDER
  • Ministerio de Ciencia e Innovación

Member of

  • BRTA
  • SOMM

Distinctions

  • Distinción de Excelencia María de Maeztu 2022-2025
  • Excellence Research
  • UNE-166002

Menú legales

  • Irisgarritasuna
  • Lege-oharra
  • Pribatutasun politika
  • Cookiei buruzko politika
  • Konfidentzialitate politika
by ACC