Skip to main content
dd
CIC nanoGUNE
  • en
  • es
  • eu

User account menu

  • Sartu

Main Menu ES

  • nanoGUNE
    • Hitz bitan
    • Antolakuntza eta finantzaketa
    • Pertsonak
    • Bat egin
    • Bizi
    • Prentsa-bulegoa
    • nanoPeople
  • Ikerketa
    • Ikerketa
    • Argitalpenak
    • Proiektuak
    • Kanpo-zerbitzuak
  • Transferentzia
    • Transferentzia
    • Enpresa berriak
    • PI Zorroa
    • Industry collaborative research positions
    • Strategic lines
    • Kanpo-zerbitzuak
    • Albisteak
  • Formakuntza
    • Master projects
    • Gradu amaierako proiektuak
    • Udako praktikaldiak
    • Doktoretza programa
  • Gizartea

User menu

  • Sartu
  1. Azala
  2. Ikerketa
  3. Nanogailuak
  4. CIC nanoGUNEk eta INTELek MESO teknologia errealitatetik hurbilago jarri dute

CIC nanoGUNEk eta INTELek MESO teknologia errealitatetik hurbilago jarri dute

2020/04/14

CIC nanoGUNE nanozientziako euskal zentroak eta Intel multinazionalak, zirkuitu integratuen munduko fabrikatzaile handienak, gogor lan egiten dute azken urte eta erdian, etorkizuneko gailu elektronikoetara begira dagoen teknologia batean: MESO teknologia. Teknologia horrek logika eta memoria zirkuitu berean integratzen ditu, eta horretarako bit magnetikoetan gordetako informazioa irakurri eta idatzi behar du. Bi funtzioek tentsio berean lan egitea behar dugu, zirkuituak funtziona dezan. Nature Electronics aldizkarian argitaratu berri den azken lanean, “irakurketa” eragiketarako irteera-tentsioa 10.000 aldiz handitzea lortu du taldeak.

CIC nanoGUNEk eta INTELek MESO teknologia errealitatetik hurbilago jarri dute

Elektronikan gaur egun erabiltzen den CMOS teknologiaren ordezkoa aurkitzea, txikiagoa, azkarragoa eta, garrantzitsuena, energia gutxiago kontsumitzen duena, erronka orokorra da. Orain dela gutxi, Intelek "MESO" logika deritzona proposatu zuen. Teknologia berri horrek etorkizuneko behar konputazionalen memoria-, interkonexio- eta logika-eskakizunak kontuan hartzen ditu. Horri esker, Mooreren legea CMOS baino haratago mantendu daiteke, eta, aldi berean, energia kontsumitzeari dagokionez eraginkorragoa izan daiteke.

Teknologia disruptibo horren bideragarritasuna frogatzeko, Intelek eta nanoGUNEk indarrak batu dituzte azken urte eta erdian. "MESOren logikaren elementu nagusiak bi zati aktibo ditu. Zati batek memoriaren informazioa "irakurtzen" du (bit magnetikoa), eta horretarako "spin Hall efektua" izeneko efektua erabiltzen du. Besteak, zenbait materialen efektu magnetoelektrikoa erabiliz, bit magnetikoa "idazten" du”, azaldu du Fèlix Casanova Ikerbasque ikertzaileak eta nanoGUNEko "MESO" proiektuaren buruak. Intel enpresako kideen ikerketa-taldeak proposatu du teknologia hori; nanoGUNEko nanogailuen taldea, berriz, mundu osoan ezaguna da "spin Hall" efektuan. "Inteleko ikerketa-taldearen kalkuluen arabera, bi zatiek tentsio berarekin funtzionatzea behar dugu, zirkuituak funtziona dezan: 0,1 volt. Arazorik handiena da spin Hall efektua erabiltzen zuten aurreko gailuek 10 nanoVolt baino ezin zituztela eman, hau da, 10 milioi aldiz gutxiago. Erronka nagusia, beraz, "irakurketa" atalaren irteera-tentsio hori handitzea da”, gehitu du Casanovak.

Orain, lan honen lehen emaitzak Nature Electronics aldizkarian argitaratu dituzte. NanoGUNEko eta Intel-eko ikerketa-taldea tentsioa 10.000 aldiz handitzeko gai izan da, diseinu hobea erabiliz, baina horretarako material estandarra erabiliz, platinoa. Oraindik ez dute azken balioa lortu teknologia horrek funtziona dezan, baina hori lortzeko hainbat aukera dituzte. Lehenik eta behin, diseinatu duten gailuak ematen duen seinalea neurriak murriztean eskalatzen da, eta hori ezinbesteko baldintza da edozein teknologia merkatuan sartzeko (bestela, ezinezkoa litzateke miniaturizazioa). Bigarrenik, gailuko materialen funtzio zehatza identifikatzen dute, eta ikusi dute zenbait materialek (berriki aurkitu diren isolatzaile topologikoek, esaterako) 0,1 volteko helbururako 1.000 aldiz hobetu beharreko diferentzia gainditzeko beharrezko propietateak dituztela. Emaitza horiek, beraz, MESO teknologia beste urrats bat hurbiltzen dute errealitatera.

For further information:

Pham, V.T., Groen, I., Manipatruni, S. et al.

Nat Electron (2020)

Spin–orbit magnetic state readout in scaled ferromagnetic/heavy metal nanostructures

Tags
Félix Casanova
Nanoelectronics
  • whatsapp
  • facebook
  • twitter
  • linkedin
  • print

Lotutako albisteak

  • 2025/05/06

    NanoGUNEren Dorre Kuantikoa —The Quantum Tower— eraikitzen hasi da

  • 2025/04/01

    Donostia, spintronikaren eta orbitronikaren hiriburu

  • 2025/02/14

    Review Article Highlights 25 Years of Modern Near-field Optical Nanoimaging

  • 2025/02/11

    Scientists synthesize 2D polyaniline crystal with unique metallic out-of-plane conductivity

  • 2025/02/07

    Emakumeak Zientzianek berdintasunaren aldeko ekintza txiki bakoitzaren ahalmena azpimarratzen du

  • CIC nanoGUNE
  • Tolosa Hiribidea, 76
  • E-20018 Donostia / San Sebastian
  • +34 943 574 000 · nano@nanogune.eu
  • Facebook Twitter Youtube Linkedin Instagram Subscribe to our Newsletter

Menú pie principal

  • nanoGUNE
  • Ikerketa
  • Transferentzia
  • Formakuntza
  • Gizartea
  • nanoPeople

Menú pie servicios

  • Kanpo-zerbitzuak
  • Argitalpenak
  • Mintegiak
  • Bat egin
  • Prentsa-bulegoa
  • Kontratatzailearen profila
  • Corporate Compliance

Menú pie grupos

  • Nanomagnetismoa
  • Nanooptika
  • Self AssemblyAutomihiztadura
  • Nanobiosistemak
  • Nanogailuak
  • Mikroskopia Elektronikoa

Menú pie grupos 2

  • Teoria
  • Nanomaterialak
  • Detekzio Kuantikoko Mikroskopia
  • Nanoingeniaritza
  • Hardware Kuantikoa

Funded by

  • EJ/GV
  • Diputación
  • FEDER
  • FEDER
  • Ministerio de Ciencia e Innovación

Member of

  • BRTA
  • SOMM

Distinctions

  • Distinción de Excelencia María de Maeztu 2022-2025
  • Excellence Research
  • UNE-166002

Menú legales

  • Irisgarritasuna
  • Lege-oharra
  • Pribatutasun politika
  • Cookiei buruzko politika
  • Konfidentzialitate politika
by ACC