Projects at a Glance

  • FAST TestOM- FAST and accurate Testing of Organic Materials

    Organic electronic devices are currently ubiquitous. For example, most mobile phones in the market have screens based on organic light-emitting diodes. These devices have many advantages against their inorganic counterparts, as they have for example lower manufacturing costs, they are typically very light and robust and can built into flexible devices, bendable and foldable.
  • 2D-INK - Redesigning 2D Materials for the Formulation of Semiconducting Inks

    Developing inks of novel 2D semiconducting materials for low-cost large-area fabrication processes.

  • SGPCM- Switching grapheme-plasmon with phase-change materials

    Graphene plasmons (GPs), is enable the transport and control of light on an extreme subwavelength scale as well as the dynamic tunability via electric-gate voltage, which can be exploited for numerous applications such as for strong light-matter interactions, tunable infrared biosensing and absorption spectroscopy, subwavelength optical imaging, as well as for the development of tunable transformation optics devices, metamaterials and metasurfaces.

  • SPM2.0- Scanning probe microscopies for nanoscale fast, tomographic and composition imaging

    Advanced Microscopy are widely recognized as one of the pillars onto which the research and manufacture of Nanotechnology based products is sustained. At present, the greatest challenge faced by these techniques is the realization of fast and non-destructive tomographic images with chemical composition sensitivity and with sub-10 nm spatial resolution, in both organic and inorganic materials, and in all environmental conditions.
  • SGPCM - Switching graphene-plasmon with phase-change materials

    Graphene plasmons (GPs) enable the transport and control of light on an extreme subwavelength scale as well as the dynamic tunability via electric-gate voltage, which can be exploited for numerous applications such as for strong light-matter interactions, tunable infrared biosensing and absorption spectroscopy, subwavelength optical imaging, as well as for the development of tunable transformation optics devices, metamaterials and metasurfaces.
  • MARINA - Marine Knowledge Sharing Platform for Federating Responsible Research and Innovation Communities

    The objective of the MARINA project is to accomplish the resolution of marine related issues and problems following the responsible research and innovation principle, creating an all-inclusive Knowledge Sharing Platform, together with federating activities such as Mobilisation and Mutual Lerning workshops and exhibitions. The expected outcome of the Work Programme is a clear improvement of the integration of society in science and innovation.
  • Graphene Core1 - Graphene-based disruptive tecnologies

    This project is the second in the series of EC-financed parts of the Graphene Flagship. The Graphene Flagship is a 10 year research and innovation endeavour with a total project cost of 1,000,000,000 euros, funded jointly by the European Commission and member states and associated countries.
  • SYNTOH - Synthetic Optical Holography

    Synthetic Optical Holography, has paved the way for phase imaging in a variety of wide-field techniques such as optical microscopy. In scanning optical microscopy, however, the serial fashion of image acquisition seems to challenge a direct implementation of traditional holography.
  • Control de Intercapas para la realización de fenómenos físicos avanzados y dispositivos electrónicos

    El proyecto INTERFACING estudia cómo las interfaces entre materiales muy diversos, tal y como un metal y una capa molecular, pueden tener propiedades electrónicas emergentes que no corresponden a ninguno de sus materiales de partida y cómo emplear dichas propiedades en dispositivos con aplicaciones en las tecnologías de la información y comunicaciones.
  • ARTE- Atomic Research for Topological Engineering

    The objectives of ARTE (Project ID: 654469) are two. The topological quantum computation (TQC) deals with the transformations related to the overall shape (“topology”) of a quantum trajectory to perform operations on data and go beyond the limitations of quantum computation. It is a revolutionary technique because it will allow quantum operations to be error free and robust while taking advantage of the radically new approaches of quantum computation, which means smaller systems, less energy dissipation, and faster processing.