Skip to main content
CIC nanoGUNE
  • en
  • es
  • eu

User account menu

  • Log in

Main Menu ES

  • nanoGUNE
    • At a Glance
    • Organization & Funding
    • People
    • Join us
    • Life
    • Newsroom
    • nanoPeople
  • Research
    • Research
    • Publications
    • Projects
    • External services
  • TechTransfer
    • TechTransfer
    • Start-ups
    • IP Portfolio
    • Industry collaborative research positions
    • Strategic lines
    • External services
    • News & events
  • Training
    • Master projects
    • Bachelor Final Projects
    • Summer Internships
    • Education University PHD
  • Society

User menu

  • Log in
  1. Home
  2. Projects
  3. ARTEMIS- Graphene Molecule Interfaces for Spintronics

ARTEMIS- Graphene Molecule Interfaces for Spintronics

ARTEMIS- Graphene Molecule Interfaces for Spintronics
Funding Program
EU - Horizon 2020
MSCA - Individual Fellowship
Coordinator
CIC nanoGUNE - Spain
Call
H2020-MSCA-IF-2017
Project ID
796817
PI at nanoGUNE
Luis Hueso (l.hueso@nanogune.eu)
From
01/12/2018
To
31/08/2021
Total funding
158,121.60€
Web
cordis.europa.eu/project/rcn/215489_en.html
Research group
Nanodevices
The future of our society is intimately bounded to the development of smaller, faster and cheaper technologies, which can promote the ability to read, store and manipulate data.

Spintronics addresses the issue by encoding information into the spin degree of freedom of electrons, in alternative or in addition to the charge. Currently, the progress of spintronics depends on the engineering of new advanced materials, which can promote the injection and transmission of the spin of electrons into the condensed matter. ARTEMIS will tackle the problem through the fabrication and study of graphene/molecule hybrid interfaces, taking advantage of both the exceptional physical properties of graphene and the additional degrees of freedom provided by molecular complexes. ARTEMIS focuses on the design of graphene/molecule interfaces in which a selection of molecules deposited on the graphene film will allow the spin scattering mechanisms of the material to be probed and manipulated as a consequence of charge transfer and magnetic coupling effects. The interfaces will be incorporated into spin valve devices realized with state-of-the-art nanofabrication techniques, in order to characterize their properties as a function of external parameters, such as electric field, magnetic field, temperature and optical excitation. The data analysis will allow meaningful spin transport quantities, such as the spin relaxation time, spin relaxation length, spin-orbit-coupling strength and spin-to-voltage conversion ratio, to be extrapolated in order to determine the actual device performance and compare it to the behaviour of pristine graphene films. ARTEMIS will shine light on the spin transport mechanisms in graphene and test the benefits of adopting graphene/molecule interfaces as building blocks of competitive spin-based technologies. Finally, ARTEMIS will promote the career of a young female researcher with a hands-on training on a promising interdisciplinary field of physics.

Partners

CIC nanoGUNE - Spain (Coordinator)

  • whatsapp
  • facebook
  • twitter
  • linkedin
  • print

By funding program

  • - Any -
  • ERA.NET
  • EU - FP7
  • European Commission
  • EU - Horizon Europe
  • EU - Horizon 2020
  • FET Open
  • Initial Training Network (ITN)
  • MSCA - Individual Fellowship
  • Spanish Government
  • CIC nanoGUNE
  • Tolosa Hiribidea, 76
  • E-20018 Donostia / San Sebastian
  • +34 943 574 000 · nano@nanogune.eu
  • Facebook Twitter Youtube Linkedin Instagram Subscribe to our Newsletter

Menú pie principal

  • nanoGUNE
  • Research
  • TechTransfer
  • Training
  • Society
  • nanoPeople

Menú pie servicios

  • External services
  • Publications
  • Seminars
  • Join us
  • Newsroom
  • Contractor profile
  • Corporate Compliance

Menú pie grupos

  • Nanomagnetism
  • Nanooptics
  • Self Assembly
  • Nanobiosystems
  • Nanodevices
  • Electron Microscopy

Menú pie grupos 2

  • Theory
  • Nanomaterials
  • Quantum-Probe Microscopy
  • Nanoengineering
  • Quantum Hardware

Funded by

  • EJ/GV
  • Diputación
  • FEDER
  • FEDER
  • Ministerio de Ciencia e Innovación

Member of

  • BRTA
  • SOMM

Distinctions

  • Distinción de Excelencia María de Maeztu 2022-2025
  • Excellence Research
  • UNE-166002

Menú legales

  • Accesibility
  • Legal notice
  • Privacy policy
  • Cookies policy
  • Confidentiality policy
by ACC