Pasar al contenido principal
dd
CIC nanoGUNE
  • en
  • es
  • eu

User account menu

  • Iniciar sesión

Main Menu ES

  • nanoGUNE
    • De un vistazo
    • Organización y Financiación
    • Personas
    • Únete
    • Vive
    • Sala de prensa
    • nanoPeople
  • Investigación
    • Investigación
    • Publicaciones
    • Proyectos
    • Servicios externos
  • Transferencia
    • Transferencia
    • Start-ups
    • Cartera PI
    • Industry collaborative research positions
    • Strategic lines
    • Servicios externos
    • Noticias
  • Formación
    • Master projects
    • Bachelor Final Projects
    • Prácticas de verano
    • Programa de doctorado
  • Sociedad

User menu

  • Iniciar sesión
  1. Inicio
  2. Cómo manipular la luz en la nanoescala en amplios rangos de frecuencia

Cómo manipular la luz en la nanoescala en amplios rangos de frecuencia

08/05/2020

Un equipo internacional liderado por investigadores de la Universidad de Oviedo y del Centro de Investigación en Nanomateriales y Nanotecnología (CINN-CSIC), junto con científicos de los centros de investigación vascos CIC nanoGUNE, Donostia Internatioanl Physics Center (DIPC), Centro de Física de Materiales (CFM, CSIC-UPV/EHU), y colaboradores internacionales de la Academia de Ciencias de China, la Universidad Case Western Reserve (EE.UU.), el Instituto Austríaco de Tecnología, el Centro de Materiales de París y la Universidad de Tokio han descubierto un método eficaz para controlar la frecuencia de la luz confinada en la nanoescala. Los resultados se publicaron recientemente en Nature Materials.

Nature Materials

Las investigación con nanoluz (cien veces más pequeña que el grosor de un cabello humano) se ha desarrollado considerablemente en los últimos años gracias a la utilización de nanomateriales estructurados en láminas como el grafeno, el nitruro de boro o el trióxido de molibdeno: los llamados materiales van der Waals.

Uno de los principales inconvenientes de las aplicaciones tecnológicas de esta nanoluz es la limitación de las gamas de frecuencias características de cada material. Pero ahora, un equipo internacional ha propuesto un novedoso método que permite ampliar significativamente esta gama de frecuencias de trabajo de los polaritones en los materiales de van der Waals. El método consiste en la intercalación de átomos alcalinos y alcalinotérreos, como el sodio, el calcio o el litio, en la estructura laminar del material de pentaóxido de van der Waals, lo que permite modificar sus enlaces atómicos y, por consiguiente, sus propiedades ópticas.

Teniendo en cuenta que una gran variedad de iones y contenedores de iones pueden intercalarse en materiales laminados, cabe esperar una respuesta espectral a la demanda de polaritones de fonones en los materiales de van der Waals, que con el tiempo cubrirá todo el rango del infrarrojo medio, algo crítico para el campo emergente de la fotónica de polaritones de fonones.

El hallazgo, publicado en la revista Nature Materials, permitirá avanzar en el desarrollo de tecnologías fotónicas compactas, como los sensores biológicos de alta sensibilidad o las tecnologías de la información y las comunicaciones a nanoescala.

For further information:

References Javier Taboada-Gutiérrez, Gonzalo Álvarez-Pérez, Jiahua Duan, Weiliang Ma, Kyle Crowley, Iván Prieto, Andrei Bylinkin, Marta Autore, Halyna Volkova, Kenta Kimura, Tsuyoshi Kimura, M.-H. Berger, Shaojuan Li, Qiaoliang Bao, Xuan P. A. Gao, Ion Errea, Alexey Y. Nikitin, Rainer Hillenbrand, Javier Martín-Sánchez and Pablo Alonso-González

Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation

Nature Materials, 2020.

DOI: 10.1038/s41563-020-0665-0

Tags
Rainer Hillenbrand
Nanophotonics
  • whatsapp
  • facebook
  • twitter
  • linkedin
  • print

Noticias relacionadas

  • 05/06/2025

    SOMMa 2025: la gestión de la excelencia científica aterriza en Donostia

  • 06/05/2025

    NanoGUNE inicia la construcción de la Torre Cuántica -The Quantum Tower-

  • 01/04/2025

    Donostia, capital de la espintrónica y la orbitrónica

  • 14/02/2025

    Review Article Highlights 25 Years of Modern Near-field Optical Nanoimaging

  • 11/02/2025

    Scientists synthesize 2D polyaniline crystal with unique metallic out-of-plane conductivity

  • CIC nanoGUNE
  • Tolosa Hiribidea, 76
  • E-20018 Donostia / San Sebastian
  • +34 943 574 000 · nano@nanogune.eu
  • Facebook Twitter Youtube Linkedin Instagram Subscribe to our Newsletter

Menú pie principal

  • nanoGUNE
  • Investigación
  • Transferencia
  • Formación
  • Sociedad
  • nanoPeople

Menú pie servicios

  • Servicios externos
  • Publicaciones
  • Seminarios
  • Únete
  • Sala de prensa
  • Perfil del contratante
  • Corporate Compliance

Menú pie grupos

  • Nanomagnetismo
  • Nanoóptica
  • Autoensamblado
  • Nanobiosistemas
  • Nanodispositivos
  • Microscopía Electrónica

Menú pie grupos 2

  • Teoría
  • Nanomateriales
  • Microscopía de Detección Cuántica
  • Nanoingeniería
  • Hardware Cuántico

Funded by

  • EJ/GV
  • Diputación
  • FEDER
  • FEDER
  • Ministerio de Ciencia e Innovación

Member of

  • BRTA
  • SOMM

Distinctions

  • Distinción de Excelencia María de Maeztu 2022-2025
  • Excellence Research
  • UNE-166002

Menú legales

  • Accesibilidad
  • Aviso Legal
  • Política de privacidad
  • Política de cookies
  • Política de confidencialidad
by ACC