Pasar al contenido principal
dd
CIC nanoGUNE
  • en
  • es
  • eu

User account menu

  • Iniciar sesión

Main Menu ES

  • nanoGUNE
    • De un vistazo
    • Organización y Financiación
    • Personas
    • Únete
    • Vive
    • Sala de prensa
    • nanoPeople
  • Investigación
    • Investigación
    • Publicaciones
    • Proyectos
    • Servicios externos
  • Transferencia
    • Transferencia
    • Start-ups
    • Cartera PI
    • Industry collaborative research positions
    • Strategic lines
    • Servicios externos
    • Noticias
  • Formación
    • Master projects
    • Bachelor Final Projects
    • Prácticas de verano
    • Programa de doctorado
  • Sociedad

User menu

  • Iniciar sesión
  1. Inicio
  2. Sala de prensa
  3. Overriding Universality via nano-scale Materials Design

Overriding Universality via nano-scale Materials Design

14/10/2021

In a recent article published in Physical Review Letters (Phys. Rev. Lett. 127, 147201 (2021)), researchers from the Nanomagnetism group at nanoGUNE in collaboration with scientists from the US and Colombia have demonstrated that it is possible to design thermodynamic critical exponents a la carte and override the universality of phase transition behavior, which was previously understood to be only dependent on the dimensionality of sample and order parameter.


 

default
Physical Review Letters

Phase transitions and critical behavior are among the most fascinating phenomena in nature and their exploration inspired the development of many branches of modern science. An excellent example is spontaneous symmetry breaking, which takes place at a critical temperature TC that divides two macroscopic phases distinguished by an order parameter, for which the ferromagnetic-to-paramagnetic phase transition is the most emblematic example. Its description is universal, so that very diverse physical systems that share the same essential symmetries exhibit the same behavior close to TC. This is characterized by a set of critical exponents that depend on the dimensionality of the system and the symmetry of the order parameter. Accordingly, physical systems are categorized in terms of universality classes despite otherwise having vastly different material characteristics. Even though universality is essential for the most relevant scientific advances in this field of research, including the description of complex systems by highly idealized models, it also results in fundamentally limiting materials design since critical exponents cannot be relevantly impacted (as opposed to TC that depends strongly on microscopic details). Correspondingly, the status of continuous phase transitions is one, in which excellent scientific understanding has been achieved already decades ago, but also one, in which materials design is severely limited in its role. Prior to the now published work by the nanoGUNE-led team, no one had found a pathway to broadly tune phase transitions and by doing so match specific technological needs, which reflected the generally accepted understanding that previously determined universalities were indeed universal and could not be bypassed.

In contrast to this universally accepted understanding of phase transitions, the new work by nanoGUNE and collaborators demonstrates a nanoscale materials design pathway that allows one to override universality in thin ferromagnetic films and enable tuning of critical exponents for ferromagnetic phase transitions in an extremely wide parameter range, while at the same time preserving scaling in an extended phase space near the critical temperature TC. The detailed magnetometry data, of which examples are shown in Fig. 1, reveal that single crystal CoRu alloy films, in which the pre-defined depth dependent exchange coupling strength follows a V-shaped profile (Fig. 1(a)), exhibit critical scaling behavior over many orders of magnitude. Their critical exponents, however, can be designed and controlled by modifying their specific nanoscale structures, thus demonstrating full tunability of critical behavior (Fig. 2). The reason for this disappearance of universality is shown to be the competing relevance of collective versus interface propagation of ferromagnetic phase transitions, whose balance the nanoGUNE-led team found to be dependent on the gradient s of the exchange coupling strength profile, resulting in previously unknown abilities to tune critical exponents via nano-scale materials design.

For further information:

Authors: Lorenzo Fallarino, Eva López Rojo, Mikel Quintana, Juan Sebastián Salcedo Gallo, Brian J. Kirby, and Andreas Berger.

Acknowledgements: We acknowledge financial support by the Spanish Ministry of Science and Innovation under the Maria de Maeztu Units of Excellence Program (MDM-2016-0618), the Project No. RTI2018-094881-B-100 and the Ph.D. fellowship No. PRE2019-088428. J. S. S. G. acknowledges the Colombian Ministry of Science, Technology and Innovation (MINCIENCIAS, Grant No. 812). 

  • whatsapp
  • facebook
  • twitter
  • linkedin
  • print

Noticias relacionadas

  • 06/05/2025

    NanoGUNE inicia la construcción de la Torre Cuántica -The Quantum Tower-

  • 01/04/2025

    Donostia, capital de la espintrónica y la orbitrónica

  • 14/02/2025

    Review Article Highlights 25 Years of Modern Near-field Optical Nanoimaging

  • 11/02/2025

    Scientists synthesize 2D polyaniline crystal with unique metallic out-of-plane conductivity

  • 07/02/2025

    Emakumeak Zientzian subraya el poder de cada pequeña acción hacia la igualdad

  • CIC nanoGUNE
  • Tolosa Hiribidea, 76
  • E-20018 Donostia / San Sebastian
  • +34 943 574 000 · nano@nanogune.eu
  • Facebook Twitter Youtube Linkedin Instagram Subscribe to our Newsletter

Menú pie principal

  • nanoGUNE
  • Investigación
  • Transferencia
  • Formación
  • Sociedad
  • nanoPeople

Menú pie servicios

  • Servicios externos
  • Publicaciones
  • Seminarios
  • Únete
  • Sala de prensa
  • Perfil del contratante
  • Corporate Compliance

Menú pie grupos

  • Nanomagnetismo
  • Nanoóptica
  • Autoensamblado
  • Nanobiosistemas
  • Nanodispositivos
  • Microscopía Electrónica

Menú pie grupos 2

  • Teoría
  • Nanomateriales
  • Microscopía de Detección Cuántica
  • Nanoingeniería
  • Hardware Cuántico

Funded by

  • EJ/GV
  • Diputación
  • FEDER
  • FEDER
  • Ministerio de Ciencia e Innovación

Member of

  • BRTA
  • SOMM

Distinctions

  • Distinción de Excelencia María de Maeztu 2022-2025
  • Excellence Research
  • UNE-166002

Menú legales

  • Accesibilidad
  • Aviso Legal
  • Política de privacidad
  • Política de cookies
  • Política de confidencialidad
by ACC