Pasar al contenido principal
dd
CIC nanoGUNE
  • en
  • es
  • eu

User account menu

  • Iniciar sesión

Main Menu ES

  • nanoGUNE
    • De un vistazo
    • Organización y Financiación
    • Personas
    • Únete
    • Vive
    • Sala de prensa
    • nanoPeople
  • Investigación
    • Investigación
    • Publicaciones
    • Proyectos
    • Servicios externos
  • Transferencia
    • Transferencia
    • Start-ups
    • Cartera PI
    • Industry collaborative research positions
    • Strategic lines
    • Servicios externos
    • Noticias
  • Formación
    • Master projects
    • Bachelor Final Projects
    • Prácticas de verano
    • Programa de doctorado
  • Sociedad

User menu

  • Iniciar sesión
  1. Inicio
  2. Nature Materials: High Resolution TEM reveals chemical bonds

Nature Materials: High Resolution TEM reveals chemical bonds

16/01/2011

The combination of HRTEM experiments and first-principles electronic structure calculations opens a new way to investigate electronic configurations of point defects, other non-periodic arrangements or nanoscale objects that cannot be studied by an electron or X-ray diffraction analysis. In the article published in Nature Materials (Nature Mat. 10, 209-215, cover page, and News&Views article by K. U. Urban), the authors show experimental evidence of charge redistribution due to chemical bonding by means of high-resolution transmission electron microscopy (HRTEM) in two different systems: nitrogen-substitution point defects in graphene, and single-layer hexagonal boron nitride.

The redistribution of charge that occurs when free atoms are arranged into a solid or molecule is of tremendous interest. It is the distribution of the binding electrons and their energy levels that defines, to a large extent, the properties of a material However, the redistribution of charge due to chemical bonding is small compared with the total charge density, and therefore difficult to measure. The effect of binding electrons on HRTEM image contrast has been explored through calculations in previous studies, but the effects were not detected experimentally. The article shows how charge transfer between neighbouring atoms can be analyzed on the basis of atomically resolved HRTEM.

As a first example, the electronic configuration around nitrogen-substitution is analyzed. In this case, the authors demonstrate that the electronic configuration on the carbon atom next to the nitrogen is perturbed by the defect. In other words, electron scattering on the carbon atom next to the nitrogen is significantly different from electron scattering on a carbon atom elsewhere in the graphene sheet. In the second example, the ionic character of single layer hexagonal boron nitride (hBN) is confirmed from HRTEM measurements. Both examples are impossible to analyze using standard diffraction techniques, which are limited to sufficiently large periodic structures not available in the case of point defects or single-layer structures.

 

 

TEM image HRTEM Image showing five nitrogen substitution defects in graphene marked by red arrows.

The method uses density-functional theory (DFT) to calculate the expected electron density that can be used to predict the atomic scattering potential for the electrons. By solving the Schrödinger equation for this potential, a local atomic-scale phase modulation can be calculated for the electron wave, which will be observed as contrast in an state-of-the-art aberration corrected transmission electron microscope, providing the evidence of the charge transfer related with the binding electrons.

The method described in the article opens new frontiers for electron microscopy techniques and shows the interest of going beyond the so called “independent atom model”, which neglected the effects of the binding electrons, in order to see, measure, and understand the way atoms integrate into solids and molecules.

For further information:

 

 

Transmission electron microscopy has reached unprecedented resolution and can provide structural information down to the single atomic level. It is now shown that a properly designed experimental analysis also allows the charge distribution around a single atomic dopant to be monitored, demonstrating the possibility of TEM to provide electronic as well as structural information. (From Nature Materials).

Tags
TEM
  • whatsapp
  • facebook
  • twitter
  • linkedin
  • print

Noticias relacionadas

  • 06/05/2025

    NanoGUNE inicia la construcción de la Torre Cuántica -The Quantum Tower-

  • 01/04/2025

    Donostia, capital de la espintrónica y la orbitrónica

  • 14/02/2025

    Review Article Highlights 25 Years of Modern Near-field Optical Nanoimaging

  • 11/02/2025

    Scientists synthesize 2D polyaniline crystal with unique metallic out-of-plane conductivity

  • 07/02/2025

    Emakumeak Zientzian subraya el poder de cada pequeña acción hacia la igualdad

  • CIC nanoGUNE
  • Tolosa Hiribidea, 76
  • E-20018 Donostia / San Sebastian
  • +34 943 574 000 · nano@nanogune.eu
  • Facebook Twitter Youtube Linkedin Instagram Subscribe to our Newsletter

Menú pie principal

  • nanoGUNE
  • Investigación
  • Transferencia
  • Formación
  • Sociedad
  • nanoPeople

Menú pie servicios

  • Servicios externos
  • Publicaciones
  • Seminarios
  • Únete
  • Sala de prensa
  • Perfil del contratante
  • Corporate Compliance

Menú pie grupos

  • Nanomagnetismo
  • Nanoóptica
  • Autoensamblado
  • Nanobiosistemas
  • Nanodispositivos
  • Microscopía Electrónica

Menú pie grupos 2

  • Teoría
  • Nanomateriales
  • Microscopía de Detección Cuántica
  • Nanoingeniería
  • Hardware Cuántico

Funded by

  • EJ/GV
  • Diputación
  • FEDER
  • FEDER
  • Ministerio de Ciencia e Innovación

Member of

  • BRTA
  • SOMM

Distinctions

  • Distinción de Excelencia María de Maeztu 2022-2025
  • Excellence Research
  • UNE-166002

Menú legales

  • Accesibilidad
  • Aviso Legal
  • Política de privacidad
  • Política de cookies
  • Política de confidencialidad
by ACC