Pasar al contenido principal
dd
CIC nanoGUNE
  • en
  • es
  • eu

User account menu

  • Iniciar sesión

Main Menu ES

  • nanoGUNE
    • De un vistazo
    • Organización y Financiación
    • Personas
    • Únete
    • Vive
    • Sala de prensa
    • nanoPeople
  • Investigación
    • Investigación
    • Publicaciones
    • Proyectos
    • Servicios externos
  • Transferencia
    • Transferencia
    • Start-ups
    • Cartera PI
    • Industry collaborative research positions
    • Strategic lines
    • Servicios externos
    • Noticias
  • Formación
    • Master projects
    • Bachelor Final Projects
    • Prácticas de verano
    • Programa de doctorado
  • Sociedad

User menu

  • Iniciar sesión
  1. Inicio
  2. A new dimension in chemical nanoimaging

A new dimension in chemical nanoimaging

22/02/2017

Researchers from the Basque institutions CIC nanoGUNE, Ikerbasque and Cidetec, and the German Robert Koch-Institut report the development of hyperspectral infrared nanoimaging. It is based on Fourier transform infrared nanospectroscopy (nano-FTIR) and enables highly sensitive spectroscopic imaging of chemical composition with nanoscale spatial resolution (Amenabar et al., Nat. Commun. 8, 14402 doi: 10.1038/ncomms14402 (2017)).

An ultimate goal in materials science, biomedicine or nanotechnology is the non-invasive compositional mapping of materials with nanometer-scale spatial resolution. A variety of high-resolution imaging techniques exist (for example, electron or scanning probe microscopies), however, they cannot meet the increasing demand in research, development and industry of being noninvasive while offering highest chemical sensitivity.

 

Nanoscale-resolved hyperspectral infrared data cube of a polymer blend, comprising 5000 nano-FTIR spectra (top panel). The data cube can be divided into clusters (by hierarchical cluster analysis) and thus converted into a compositional map (bottom panel). It reveals the polymer components (grey, blue and red areas), as well as the interfaces between them (green areas) that partially exhibit anomalies that are explained by chemical interaction (purple areas). Copyright: CIC nanoGUNE.

Nanoscale chemical analysis has recently become possible with nano-FTIR spectroscopy, an optical technique that combines scattering-type scanning near-field optical microscopy (s-SNOM) and Fourier transform infrared (FTIR) spectroscopy. By illuminating the metalized tip of an atomic force microscope (AFM) with a broadband infrared laser or a synchrotron, and analyzing the backscattered light with a specially designed Fourier Transform spectrometer, local infrared spectroscopy with a spatial resolution of less than 20 nm has been demonstrated. However, only point spectra or spectroscopic line scans comprising not more than a few tens of nano-FTIR spectra could be achieved on organic samples, owing to the long acquisition times.

Now, researchers from CIC nanoGUNE (San Sebastian, Spain), Ikerbasque (Bilbao, Spain), Cidetec (San Sebastian, Spain) and the Robert Koch-Institut (Berlin, Germany) developed hyperspectral infrared nanoimaging. The technique allows for recording two-dimensional arrays of several thousand of nano-FTIR spectra - usually referred as to hyperspectral data cubes - in a few hours and with a spatial resolution and precision better than 30 nm.

“The excellent data quality allows for extracting nanoscale-resolved chemical and structural information with the help of statistical techniques (multivariate data analysis) that use the complete spectroscopic information available at each pixel”, says Iban Amenabar, first author of the work. Even without any previous information about the sample and its components, pixels with similar infrared spectra can be grouped automatically with the help of hierarchical cluster analysis. By imaging and analysis of a three-component polymer blend and (Figure 1), the researchers obtained nanoscale chemical maps that do not only reveal the spatial distribution of the individual components but also spectral anomalies that were explained by local chemical interaction. The researcher also demonstrated in situ hyperspectral infrared nanoimaging of native melanin in human hair.

For their experiments, the researchers used the commercial nano-FTIR system from Neaspec GmbH including a mid-infrared laser continuum that covers the spectral range from 1000 to 1900 cm-1. Multivariate analysis of the hyperspectral data was done with the software tool CytoSpec, which was developed by coauthor Peter Lasch.

“With the rapid development of high-performance mid-infrared lasers and by applying advanced noise reduction strategies, we envision high-quality hyperspectral infrared nanoimaging in few minutes”, concludes Rainer Hillenbrand who led the work. “We see a large application potential in various fields of science and technology, including the chemical mapping of polymer composites, pharmaceutical products, organic and inorganic nanocomposite materials or biomedical tissue imaging ”, he adds.

For further information:
  • Original publication: I. Amenabar, S. Poly, M. Goikoetxea, W. Nuansing, P. Lasch, and R. Hillenbrand, Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy, Nat. Commun. 8:14402 doi: 10.1038/ncomms14402 (2017)
  • Nanooptics group
Contact:

Rainer Hillenbrand
Nanooptics Group
CIC nanoGUNE
Tolosa Hiribidea 76 20018 Donostia - San Sebastian, Spain
r.hillenbrand@nanogune.eu

  • whatsapp
  • facebook
  • twitter
  • linkedin
  • print

Noticias relacionadas

  • 05/06/2025

    SOMMa 2025: la gestión de la excelencia científica aterriza en Donostia

  • 06/05/2025

    NanoGUNE inicia la construcción de la Torre Cuántica -The Quantum Tower-

  • 01/04/2025

    Donostia, capital de la espintrónica y la orbitrónica

  • 14/02/2025

    Review Article Highlights 25 Years of Modern Near-field Optical Nanoimaging

  • 11/02/2025

    Scientists synthesize 2D polyaniline crystal with unique metallic out-of-plane conductivity

  • CIC nanoGUNE
  • Tolosa Hiribidea, 76
  • E-20018 Donostia / San Sebastian
  • +34 943 574 000 · nano@nanogune.eu
  • Facebook Twitter Youtube Linkedin Instagram Subscribe to our Newsletter

Menú pie principal

  • nanoGUNE
  • Investigación
  • Transferencia
  • Formación
  • Sociedad
  • nanoPeople

Menú pie servicios

  • Servicios externos
  • Publicaciones
  • Seminarios
  • Únete
  • Sala de prensa
  • Perfil del contratante
  • Corporate Compliance

Menú pie grupos

  • Nanomagnetismo
  • Nanoóptica
  • Autoensamblado
  • Nanobiosistemas
  • Nanodispositivos
  • Microscopía Electrónica

Menú pie grupos 2

  • Teoría
  • Nanomateriales
  • Microscopía de Detección Cuántica
  • Nanoingeniería
  • Hardware Cuántico

Funded by

  • EJ/GV
  • Diputación
  • FEDER
  • FEDER
  • Ministerio de Ciencia e Innovación

Member of

  • BRTA
  • SOMM

Distinctions

  • Distinción de Excelencia María de Maeztu 2022-2025
  • Excellence Research
  • UNE-166002

Menú legales

  • Accesibilidad
  • Aviso Legal
  • Política de privacidad
  • Política de cookies
  • Política de confidencialidad
by ACC