Pasar al contenido principal
dd
CIC nanoGUNE
  • en
  • es
  • eu

User account menu

  • Iniciar sesión

Main Menu ES

  • nanoGUNE
    • De un vistazo
    • Organización y Financiación
    • Personas
    • Únete
    • Vive
    • Sala de prensa
    • nanoPeople
  • Investigación
    • Investigación
    • Publicaciones
    • Proyectos
    • Servicios externos
  • Transferencia
    • Transferencia
    • Start-ups
    • Cartera PI
    • Industry collaborative research positions
    • Strategic lines
    • Servicios externos
    • Noticias
  • Formación
    • Master projects
    • Bachelor Final Projects
    • Prácticas de verano
    • Programa de doctorado
  • Sociedad

User menu

  • Iniciar sesión
  1. Inicio
  2. Science: Converting 'noise' into mechanical energy on the nanoscale

Science: Converting 'noise' into mechanical energy on the nanoscale

08/11/2012

Scientists of the Freie Universität Berlin demonstrate it is possible to use the energy of a moving hydrogen molecule to power up a “mechanical machine”. The work, led by Jose Ignacio Pascual (currently leader of the Nanoimaging Group at nanoGUNE), has been published in the prestigious journal Science (Science, DOI: 10.1126/science.1227621).

In nature, process like the motion of fluids, the intensity of electromagnetic signals, the chemical composition,.. are subject to random fluctuations that we normally call noise. Noise is an energy source driving many phenomena in continuous evolution like, for example, earth climate, or the evolution of biological systems. Harvesting energy from noise is a paradigm that nature has shown to be possible.

The research group focused their study on a hydrogen molecule (H2). In their experiment, they find that the random motion – the noise – of an individual hydrogen molecule can cause the periodic motion of a macroscopic mechanical oscillator. “This means that the smallest possible molecule, a hydrogen molecule, is ‘pushing’ an oscillator 1019 times more massive”, explains Nacho Pascual, one of the authors of the study.

 

 

Representation of the concerted motion of an oscillating tip (the periodically moving system) and a H-H molecule switching between two positions (the noisy fluctuations). When the tip approaches closer to the molecule (indicated as red in the scheme) the randomly moving molecule tends to spend more time in a configuration that pushes the tip upwards. For higher tip positions, the noisy molecule changes to a form (blue) with less effect on the tip. The periodically changing forces on the tip feed its motion. Representation of the concerted motion of an oscillating tip (the periodically moving system) and a H-H molecule switching between two positions (the noisy fluctuations). When the tip approaches closer to the molecule (indicated as red in the scheme) the randomly moving molecule tends to spend more time in a configuration that pushes the tip upwards. For higher tip positions, the noisy molecule changes to a form (blue) with less effect on the tip. The periodically changing forces on the tip feed its motion.

The underlying principle behind, known as Stochastic Resonance, uses the concerted motion of random hydrogen fluctuations and the periodic motion of a mechanical oscillator to amplify the energy transfer from molecule to oscillator. To couple their motion, the molecule was enclosed in the small gap between a flat surface and the sharp tip of an atomic force microscope. This microscope uses the periodic movement of a tip located at the end of a very sensitive mechanical oscillator to ‘sense’ forces existing at the nanoscale. The random motion of the molecule exerted forces against the tip, making it to oscillate. The oscillation of the tip, in turn, modulated the random motion of the hydrogen molecule and, hence, of the forces acting on itself. This resulted in a concerted “dance” of the tip with the noisy molecule. In this way, the tip oscillates distances larger than the size of the molecule using the energy extracted from the noise.

“In our experiment, the motion of the hydrogen molecule is induced by externally passing electrical currents through the molecule, not by temperature”, says Nacho Pascual, “and nothing speaks against this effect occurring for molecular fluctuations induced by other sources of energy like, for example, light”. The Stochastic Resonance mechanism has been proposed to be behind biomolecular engines powering up the cellular activity. “A promising aspect of our result is that it could be considered in the design of artificial molecular motors. In this way, energy from noisy environments could be extracted to drive the functional activity of a molecular motor like, for example ,its unidirectional rotation”, explains Felix von Oppen, whose theoretical modelling was crucial for the interpretation of the experimental results.

The experiments were realized using an ultra-sensitive atomic force microscope, constructed at the Physics Department of the Freie Universität Berlin to investigate molecular switches adsorbed on surfaces, the main focus of the collaborative research project SFB 658. “The detection of the movement of a molecule with the microscope is in fact not so difficult at the current level of development of this technique”, comment Christian Lotze and Martina Corso, who claim that “the main achievement is the identification and interpretation of the effect: that the molecule drives the motion of the oscillator”. In line with her co-authors, Katharina Franke assures that “now, our research focuses on the search for other sources of molecular noise, like electrical or magnetic fluctuations, which could lead to more efficient energy transfer to a mechanical oscillator.”

Original publication:

Driving a Macroscopic Oscillator with the Stochastic Motion of a Hydrogen Molecule

Christian Lotze, Martina Corso, Katharina J. Franke, Felix von Oppen, Jose Ignacio Pascual, Science vol. 338, no. 6108 pp. 779-782. DOI: 10.1126/science.1227621 (2012)

Download the Press Release

 

Science: Converting 'noise' into mechanical energy on the nanoscale (743.95 KB)
Contact:

Jose Ignacio Pascual
Nanoimaging Group
CIC nanoGUNE Consolider
Tolosa Hiribidea 76 E-20018 Donostia – San Sebastian
ji.pascuald@nanogune.eu

Download the Press Release

  • whatsapp
  • facebook
  • twitter
  • linkedin
  • print

Noticias relacionadas

  • 06/05/2025

    NanoGUNE inicia la construcción de la Torre Cuántica -The Quantum Tower-

  • 01/04/2025

    Donostia, capital de la espintrónica y la orbitrónica

  • 14/02/2025

    Review Article Highlights 25 Years of Modern Near-field Optical Nanoimaging

  • 11/02/2025

    Scientists synthesize 2D polyaniline crystal with unique metallic out-of-plane conductivity

  • 07/02/2025

    Emakumeak Zientzian subraya el poder de cada pequeña acción hacia la igualdad

  • CIC nanoGUNE
  • Tolosa Hiribidea, 76
  • E-20018 Donostia / San Sebastian
  • +34 943 574 000 · nano@nanogune.eu
  • Facebook Twitter Youtube Linkedin Instagram Subscribe to our Newsletter

Menú pie principal

  • nanoGUNE
  • Investigación
  • Transferencia
  • Formación
  • Sociedad
  • nanoPeople

Menú pie servicios

  • Servicios externos
  • Publicaciones
  • Seminarios
  • Únete
  • Sala de prensa
  • Perfil del contratante
  • Corporate Compliance

Menú pie grupos

  • Nanomagnetismo
  • Nanoóptica
  • Autoensamblado
  • Nanobiosistemas
  • Nanodispositivos
  • Microscopía Electrónica

Menú pie grupos 2

  • Teoría
  • Nanomateriales
  • Microscopía de Detección Cuántica
  • Nanoingeniería
  • Hardware Cuántico

Funded by

  • EJ/GV
  • Diputación
  • FEDER
  • FEDER
  • Ministerio de Ciencia e Innovación

Member of

  • BRTA
  • SOMM

Distinctions

  • Distinción de Excelencia María de Maeztu 2022-2025
  • Excellence Research
  • UNE-166002

Menú legales

  • Accesibilidad
  • Aviso Legal
  • Política de privacidad
  • Política de cookies
  • Política de confidencialidad
by ACC