Pasar al contenido principal
dd
CIC nanoGUNE
  • en
  • es
  • eu

User account menu

  • Iniciar sesión

Main Menu ES

  • nanoGUNE
    • De un vistazo
    • Organización y Financiación
    • Personas
    • Únete
    • Vive
    • Sala de prensa
    • nanoPeople
  • Investigación
    • Investigación
    • Publicaciones
    • Proyectos
    • Servicios externos
  • Transferencia
    • Transferencia
    • Start-ups
    • Cartera PI
    • Industry collaborative research positions
    • Strategic lines
    • Servicios externos
    • Noticias
  • Formación
    • Master projects
    • Bachelor Final Projects
    • Prácticas de verano
    • Programa de doctorado
  • Sociedad

User menu

  • Iniciar sesión
  1. Inicio
  2. Spin Control Without Magnetic Fields

Spin Control Without Magnetic Fields

22/07/2021

Researchers from the Nanodevices Group at CIC nanoGUNE demonstrate that they can control the polarization direction of a spin current without having to apply a magnetic field, which could aid in implementing energy-efficient spintronics devices. The work has been published in Physical Review Letters.

Spin Control Without Magnetic Fields

In graphene, spin currents can live much longer than they can in other materials, making the material an ideal platform for future spintronic devices. But there is a problem: To manipulate graphene’s spin currents, researchers need to apply a magnetic field to the material. The necessary hardware is difficult to integrate into circuits, limiting how small graphene-based spin devices could be shrunk. Now Josep Ingla-Aynés of CIC nanoGUNE and colleagues have demonstrated a method to manipulate—at room temperature—graphene spin currents using only electric fields.

The team transferred a sheet of tungsten diselenide (WSe2) on a sheet of bilayer graphene and heated the two materials to bond them together. Then they patterned the structure with a series of electrodes, which they used to apply an in-plane electric field, a gate voltage, and to inject into the graphene a spin current. Experiments were performed at 50 K and at room temperature.

At both temperatures, the team observed that they could switch the polarization direction of the spin current by changing the magnitude of both the in-plane electric field and the gate voltage. They say that the control comes from the presence of spin-orbit coupling in the WSe2 layer. This effect produces an effective magnetic field in the graphene that is sufficient to change the spin angle.

Ingla-Aynés says that the demonstration represents a room-temperature version of the long sought-after “Datta Das” spin transistor. The Datta Das spin transistor is a device whose electrical resistance can be switched from high to low by changing the polarization direction of the spin current. Such devices have been realized at low temperatures using two-dimensional electron gases (2DEGs) but not at higher temperatures.

Source: Physics

For further information:

Electrical control of valley-Zeeman spin-orbit-coupling--induced spin precession at room temperature

Physical Review Letters (Vol. 127, No. 4):

DOI: 10.1103/PhysRevLett.127.047202

  • whatsapp
  • facebook
  • twitter
  • linkedin
  • print

Noticias relacionadas

  • 06/05/2025

    NanoGUNE inicia la construcción de la Torre Cuántica -The Quantum Tower-

  • 01/04/2025

    Donostia, capital de la espintrónica y la orbitrónica

  • 14/02/2025

    Review Article Highlights 25 Years of Modern Near-field Optical Nanoimaging

  • 11/02/2025

    Scientists synthesize 2D polyaniline crystal with unique metallic out-of-plane conductivity

  • 07/02/2025

    Emakumeak Zientzian subraya el poder de cada pequeña acción hacia la igualdad

  • CIC nanoGUNE
  • Tolosa Hiribidea, 76
  • E-20018 Donostia / San Sebastian
  • +34 943 574 000 · nano@nanogune.eu
  • Facebook Twitter Youtube Linkedin Instagram Subscribe to our Newsletter

Menú pie principal

  • nanoGUNE
  • Investigación
  • Transferencia
  • Formación
  • Sociedad
  • nanoPeople

Menú pie servicios

  • Servicios externos
  • Publicaciones
  • Seminarios
  • Únete
  • Sala de prensa
  • Perfil del contratante
  • Corporate Compliance

Menú pie grupos

  • Nanomagnetismo
  • Nanoóptica
  • Autoensamblado
  • Nanobiosistemas
  • Nanodispositivos
  • Microscopía Electrónica

Menú pie grupos 2

  • Teoría
  • Nanomateriales
  • Microscopía de Detección Cuántica
  • Nanoingeniería
  • Hardware Cuántico

Funded by

  • EJ/GV
  • Diputación
  • FEDER
  • FEDER
  • Ministerio de Ciencia e Innovación

Member of

  • BRTA
  • SOMM

Distinctions

  • Distinción de Excelencia María de Maeztu 2022-2025
  • Excellence Research
  • UNE-166002

Menú legales

  • Accesibilidad
  • Aviso Legal
  • Política de privacidad
  • Política de cookies
  • Política de confidencialidad
by ACC