Related news by tag Nanofabrication

Investigadores vascos ponen la luz “patas arriba”

Ilustración de ondas propagándose desde una fuente puntual. Izquierda: Propagación normal de ondas en una superficie. Derecha: Propagación inusual de ondas en una metasuperficie hiperbólica (P. Li, CIC nanoGUNE)

Las ondas ópticas que se propagan desde una fuente puntual normalmente exhiben frentes de onda circulares. “Como las ondas en una superficie de agua cuando se arroja una piedra”, explica Peining Li, investigador postdoctoral en nanoGUNE y primer autor del artículo. La razón de esta propagación circular es que el medio a través del cual viaja la luz es típicamente homogéneo e isótropo, es decir, uniforme en todas las direcciones.

Los científicos ya habían predicho teóricamente que determinadas superficies estructuradas pueden poner la luz “patas arriba” cuando se propaga a lo largo de ellas. “En estas superficies, conocidas como 'metasuperficies hiperbólicas', las ondas emitidas por una fuente puntual viajan sólo en determinadas direcciones y además, con frentes de onda abiertos (cóncavos)”, explica Javier Alfaro, estudiante de doctorado en nanoGUNE y coautor del artículo. Debido a su propagación direccional y a que su longitud de onda es mucho más pequeña que la de la luz en el espacio libre o en fibras ópticas, estas ondas podrían ayudar a miniaturizar los dispositivos ópticos para la detección y el procesamiento de señales.

Ahora, los investigadores han desarrollado una metasuperficie para la luz infrarroja. Esta metasuperficie está hecha de nitruro de boro, un material bidimensional similar al grafeno, que posee una extraordinaria capacidad para manipular la luz infrarroja a escalas extremadamente pequeñas. Esta propiedad puede ser empleada para el desarrollo de sensores químicos miniaturizados o para el control de la transmisión de calor en nanodispositivos. Por otro lado, han logrado observar por primera vez frentes de onda cóncavos en el infrarrojo gracias a un microscopio óptico muy especial.

La fabricación de metasuperficies hiperbólicas es compleja ya que requiere de una estructuración extremadamente precisa de dimensiones nanométricas. Irene Dolado, estudiante de doctorado en nanoGUNE, y Saül Velez, ex investigador postdoctoral en nanoGUNE (ahora en ETH Zürich), han superado este reto utilizando técnicas avanzadas como la litografía por haz de electrones y el grabado en pequeñas láminas de nitruro de boro de alta calidad proporcionado por la Universidad Estatal de Kansas. “Después de varias optimizaciones, hemos logrado la precisión requerida y hemos obtenido una rejilla con un espaciado tan pequeño como 25 nm“, apunta Irene Dolado. “Los mismos métodos de fabricación también se pueden aplicar a otros materiales y podrían utilizarse para realizar metasuperficies artificiales con propiedades ópticas a medida”, añade Saül Vélez.

De la teoría a la realidad 

Para observar cómo se propagan las ondas en la metasuperficie, los investigadores han usado una técnica de nanoimagen infrarroja de vanguardia que ha sido desarrollada por el propio grupo de Nanoóptica de nanoGUNE. Primero colocaron una nanoantena de oro sobre la metasuperficie. “De este modo, la nanoantena genera ondas de la misma manera que lo hace una piedra cuando la tiramos al agua”, comenta Peining Li. La nanoantena concentra la luz infrarroja incidente en un pequeño foco que lanza las ondas que se propagan sobre la metasuperficie. Los investigadores tomaron las imágenes de las ondas utilizando un microscopio óptico de barrido de campo cercano (s-SNOM). “Fue increíble ver las imágenes. Mostraban la curvatura cóncava de los frentes de onda que se propagaban desde la nanoantena de oro, exactamente tal y como predice la teoría”, dice Rainer Hillenbrand, investigador Ikerbasque en nanoGUNE, quien ha dirigido la investigación.

Estos prometedores resultados abren la puerta a la utilización de otros exóticos materiales bidimensionales como plataforma para realizar nanocircuitos y metasuperficies hiperbólicas. Además, demuestran que la microscopía de campo cercano puede emplearse para revelar fenómenos ópticos en materiales anisótropos y en metasuperficies.

La investigación ha sido financiada principalmente por subvenciones individuales de las acciones Marie Sklodowsca-Curie de la Unión Europea y los programas de becas de investigación predoctoral del Gobierno Vasco y el Gobierno Español, así como de la Nacional Science Foundation americana, y se ha llevado a cabo en consonancia con los proyectos de nanoGUNE dentro de la iniciativa europea Graphene Flagship.

Novaspider, una innovadora tecnología recientemente protegida mediante solicitud de patente

Los campos de aplicación de las estructuras generadas por NovaSpider son variados y prometedores. El equipo permite diseñar materiales compuestos robustos, ligeros, porosos y con alta superficie específica a partir de nanofibras poliméricas cuya naturaleza, diámetro, aspecto y morfología puede modularse de forma sencilla y eficiente. Este tipo de estructuras despiertan gran interés en campos como la medicina regenerativa, donde se utilizan como andamiaje para la regeneración de tejidos, el sector biomédico, donde son funcionalizados y empleados en liberación controlada de fármacos y protección de heridas, y el sector de la energía, donde se estudia su papel como catalizador en superbaterías.

A su vez, cabe destacar su aplicación en el sector textil, y de empaquetado, dónde se busca mejorar la conservación de alimentos y la sustitución de materiales plásticos por materiales biodegradables. El banco de muestras probadas hasta ahora es amplio; azúcares, proteínas, colágeno, gelatina, celulosa, etc. demostrando la alta versatilidad de la tecnología. Estos materiales, depositados sobre el cartón de empaquetado, ofrecen las propiedades barrera que el cartón necesita para su contacto con los alimentos. De esta forma, se pretende suplir la función que hasta ahora ofrecía el film plástico y sustituirlo por un recubrimiento completamente biodegradable.

El proyecto es fruto del trabajo realizado durante los últimos años por el Dr. Wiwat Nuansing, experto en electrospinning, y el ingeniero Javier Latasa, especializado en mecatrónica en el Grupo de Auto-Ensamblado liderado por Alexander Bittner, Investigador Ikerbasque en nanoGUNE. El apoyo de expertos de la industria de la impresión 3D ha posibilitado que el equipo cumpla con los más altos estándares e incluya los últimos avances tecnológicos del sector. 

El equipo NovaSpider integra la tecnología de impresión aditiva FDM/FFF con las técnicas para fabricación de nanofibras electrospinning de disolución y melt electrospinning:

  • La tecnología FFF (o FDM: deposición de material fundido) es un proceso de fabricación 3D de piezas con termoplásticos muy conocido en la actualidad. Este método funciona por deposición progresiva de material fundido, capa por capa, que se solidifica cuando se enfría creando el objeto deseado.
  • El Electrospinning es una técnica que consiste en someter a una solución, generalmente polimérica, a una fuerza electrostática generada por el campo eléctrico inducido al aplicar alto voltaje entre la solución y un colector enfrentado. Esto provoca que una fibra continua salga de la disolución en forma chorro agitado contra el colector, donde se obtiene una membrana no tejida de nanofibras desordenadas.
  • Por último, la técnica Melt-electrospinning es una variante de la anterior. En lugar de utilizar disolventes, el material termoplástico es calentado hasta llevarse a estado líquido. Igual que en el caso anterior, una fuerza electrostática hace que una fibra continua sea extraída del material líquido. En este caso, la fibra es de diámetro superior a la micra y se puede conseguir que sigua una trayectoria rectilínea, lo que nos permite controlar con precisión su deposición y, por ello, reproducir estructuras de microfibras siguiendo patrones deseados.
Suscribirse a