Pasar al contenido principal
dd
CIC nanoGUNE
  • en
  • es
  • eu

User account menu

  • Iniciar sesión

Main Menu ES

  • nanoGUNE
    • De un vistazo
    • Organización y Financiación
    • Personas
    • Únete
    • Vive
    • Sala de prensa
    • nanoPeople
  • Investigación
    • Investigación
    • Publicaciones
    • Proyectos
    • Servicios externos
  • Transferencia
    • Transferencia
    • Start-ups
    • Cartera PI
    • Industry collaborative research positions
    • Strategic lines
    • Servicios externos
    • Noticias
  • Formación
    • Master projects
    • Bachelor Final Projects
    • Prácticas de verano
    • Programa de doctorado
  • Sociedad

User menu

  • Iniciar sesión
  1. Inicio
  2. Investigación
  3. Nanoóptica
  4. Researchers Observe Flat-Band Ultrastrong Coupling

Researchers Observe Flat-Band Ultrastrong Coupling

18/12/2025

Researchers from CIC nanoGUNE, in collaboration with the Donostia International Physics Center (DIPC) and the Center for Materials Physics (CFM), have experimentally observed and theoretically verified flat-band ultrastrong coupling between optical phonons and surface plasmon polaritons. Published in Nature Materials, the study reveals a previously unexplored regime of light–matter interaction with potential applications in polariton-driven chemistry, materials science, nanophotonics, and quantum engineering.

half
Artistic illustration fusing real- and momentum‑space representation of flat‑band hybrid polaritons. Image generated by Edoardo Vicentini with ChatGPT (OpenAI, 2025) and Copilot (Microsoft AI, 2025).

Strong and ultrastrong coupling arise when the exchange of energy between light and matter becomes so large that the two no longer behave independently, instead forming hybrid modes—called polaritons—that combine the characteristics of both. In this work, the researchers entered the ultrastrong coupling regime by tuning surface plasmons—collective electron oscillations—in a semiconductor substrate so that their resonance frequency matches that of the optical lattice vibrations (phonons) of a thin polar crystal layer placed on top. Achieving this alignment produces a flat-band ultrastrong coupling response, meaning that the hybrid polariton states maintain nearly the same energy (frequency) across a broad wavevector range rather than only at specific wavevectors (momenta). This represents a key departure from conventional ultrastrong coupling, where polaritons typically exist only within a narrow region of momentum space.

To demonstrate this effect experimentally, the team used pump–probe nanospectroscopy, a technique in which one optical pulse excites the material and a second, time-delayed optical pulse measures the optical response with nanoscale spatial resolution. A near-infrared pump pulse was used to create mobile electrons in the InAs substrate through photoexcitation. The increased number of mobile carriers shifts the surface plasmon resonance frequency, matching it with the optical phonons of the 50-nm-thick SiC layer deposited above and thereby enabling the flat-band ultrastrong coupling regime. The resulting hybrid surface plasmon–phonon polariton modes were visualized using mid-infrared spectroscopic nanoimaging, which provided information on their frequency–wavevector relationship (dispersion) and confirmed flat-band ultrastrong coupling. The experiments were complemented by theoretical modeling, which confirmed the presence of hybrid polaritons extending over a wide range of momenta.

Reaching strong and ultrastrong coupling over a broad momentum range—effectively generating a large set of hybrid modes simultaneously—could benefit polariton-driven chemistry, where hybrid light–matter states modify chemical energy landscapes, as well as phase transitions induced by strong light–matter coupling, which can reshape a material’s physical properties.

For further information:

Edoardo Vicentini et al.

Real-space observation of flat-band ultrastrong coupling between optical phonons and surface plasmon polaritons,

Nature Materials, 18. December 2025

https://doi.org/10.1038/s41563-025-02412-6

Tags
NANOOPTICS
research
Nanotechnology
nanoscience
  • whatsapp
  • facebook
  • twitter
  • linkedin
  • print

Noticias relacionadas

  • 09/12/2025

    Fernando González Zalba recibe la competitiva ayuda ERC Consolidator Grant

  • 28/11/2025

    Rapid fabrication of self-propelled, steerable magnetic microcatheters for precision medicine

  • 27/11/2025

    El EIT Jumpstarter premia el proyecto empresarial Prospect Biotech de CIC nanoGUNE

  • 21/11/2025

    NanoGUNE acoge el Hamaiketako de Gerentes con foco en tecnologías cuánticas

  • 07/11/2025

    Beatriz Martín García receives one of the 2025 Journal of Materials Chemistry Lectureship runner-up awards

  • CIC nanoGUNE
  • Tolosa Hiribidea, 76
  • E-20018 Donostia / San Sebastian
  • +34 943 574 000 · nano@nanogune.eu
  • Facebook Twitter Youtube Linkedin Instagram Subscribe to our Newsletter

Menú pie principal

  • nanoGUNE
  • Investigación
  • Transferencia
  • Formación
  • Sociedad
  • nanoPeople

Menú pie servicios

  • Servicios externos
  • Publicaciones
  • Seminarios
  • Únete
  • Sala de prensa
  • Perfil del contratante
  • Corporate Compliance

Menú pie grupos

  • Nanomagnetismo
  • Nanoóptica
  • Autoensamblado
  • Nanobiosistemas
  • Nanodispositivos
  • Microscopía Electrónica

Menú pie grupos 2

  • Teoría
  • Nanomateriales
  • Microscopía de Detección Cuántica
  • Nanoingeniería
  • Hardware Cuántico

Funded by

  • EJ/GV
  • Diputación
  • FEDER
  • FEDER
  • Ministerio de Ciencia e Innovación

Member of

  • BRTA
  • SOMM

Distinctions

  • Distinción de Excelencia María de Maeztu 2022-2025
  • Excellence Research
  • UNE-166002

Menú legales

  • Accesibilidad
  • Aviso Legal
  • Política de privacidad
  • Política de cookies
  • Política de confidencialidad
by ACC