Pasar al contenido principal
dd
CIC nanoGUNE
  • en
  • es
  • eu

User account menu

  • Iniciar sesión

Main Menu ES

  • nanoGUNE
    • De un vistazo
    • Organización y Financiación
    • Personas
    • Únete
    • Vive
    • Sala de prensa
    • nanoPeople
  • Investigación
    • Investigación
    • Publicaciones
    • Proyectos
    • Servicios externos
  • Transferencia
    • Transferencia
    • Start-ups
    • Cartera PI
    • Strategic lines
    • Servicios externos
    • Noticias
  • Formación
    • Formación
  • Sociedad
    • Sociedad
    • Preguntas
    • Noticias

User menu

  • Iniciar sesión
  1. Inicio
  2. Los materiales del futuro se hacen 'topológicos'

Los materiales del futuro se hacen 'topológicos'

01/07/2017

Una delgadísima capa de wolframio y telurio ha resultado ser un exótico tipo de material bautizado por los físicos como 'aislante topológico'. La revista Nature Physics ha publicado los resultados de este estudio en el que ha participado nanoGUNE. Las propiedades físicas de este material de dos dimensiones hacen que tenga un futuro prometedor en el emergente campo de la espintrónica.

Miguel M. Ugeda
El investigador de CIC nanoGUNE Miguel M. Ugeda, del grupo Nanoimagen, ha participado en un estudio internacional, junto con investigadores de la Universidad de Stanford y de la Universidad de California en Berkeley, en el que han demostrado experimentalmente el efecto llamado "Hall cuántico de spin" en un material bidimensional. Los materiales que presentan este fenómeno se denominan “aislantes topológicos” y, desde que fueron predichos teóricamente en 2005, solo se han encontrado en la naturaleza unos pocos ejemplos en dos dimensiones, y ninguno de ellos de utilidad práctica. La revista científica Nature Physics, de reconocido prestigio internacional, se ha hecho eco de los resultados obtenidos en esta investigación.

Ugeda ve un futuro prometedor a este tipo de materiales en espintrónica, una rama incipiente de la electrónica cuyo objetivo es la manipulación y control del espín del electrón como portador de información. La ventaja de aprovechar el espín del electrón, que es una propiedad intrínseca del mismo, se refleja en el aumento de la información transmitida ya que, a diferencia de su carga electrónica, el espín puede tomar dos valores opuestos, “up” y “down”. Los dispositivos espintrónicos podrían transportar mayor cantidad de datos de manera mucho más fluida, con una menor demanda de potencia y menor acumulación de calor.

El material investigado está compuesto de wolframio y telurio. El wolframio es un elemento químico descubierto en 1783 por los hermanos Elhuyar en Bergara (Gipuzkoa); un metal utilizado para muchísimas aplicaciones, desde los filamentos de las lámparas eléctricas a las puntas de bolígrafos. Combinando átomos de este metal con átomos de telurio en tan solo tres capas atómicas, han encontrado el primer material aislado bidimensional con propiedades topológicas, es decir, aislante eléctrico en el interior y conductor en sus bordes. “El flujo de electrones en los bordes en este tipo de material resulta estar ligado al espín (“up” y “down”) de cada electrón; sorprendentemente los electrones de espín opuesto se mueven en sentido contrario a lo largo de los bordes. Por tanto, se pueden generar corrientes con un spin definido en una dirección o en otra. Los canales o carriles del borde del material se pueden imaginar como una carretera de doble sentido en la que los electrones “up” van en una dirección y los “down” en la otra. Y no puede ser de otra manera”, explica Miguel M. Ugeda.

Por otra parte, cabe destacar que debido a las propiedades topológicas de este material la corriente eléctrica debería ser insensible a la contaminación e impurezas que pueda haber en el material, algo que distingue a los aislantes topológicos de materiales conductores convencionales. Otra ventaja añadida es que el material en cuestión “es estable químicamente y realmente sencillo de sintetizar. Además se puede combinar con otros materiales bidimensionales a modo sándwich para diseñar materiales artificiales con propiedades “a la carta” para cualquier aplicación específica”, añade el investigador.

For further information:

S. Tang, C. Zhang, D. Wong, Z. Pedramrazi, H.-Z. Tsai, C. Jia, B. Moritz, M. Claassen, H. Ryu, S. Kahn, J. Jiang, H. Yan, M. Hashimoto, D. Lu, R. G. Moore, C.-C. Hwang, C. Hwang, Z. Hussain, Y. Chen, M. M. Ugeda, Z. Liu, X. Xie, T. P. Devereaux, M. F. Crommie, S.-K. Mo, and Z.-X. Shen
Quantum spin Hall state in monolayer 1T’-WTe2
Nature Physics, 13, 683-687 (2017). DOI: 10.1038/NPHYS4174

Tags
Spintronics
NANOIMAGING
Surface physics
  • whatsapp
  • facebook
  • twitter
  • linkedin
  • print

Related news

  • 27/11/2023

    Impresión de estructuras biológicas complejas para aplicaciones médicas

  • 02/11/2023

    Un almacenamiento estable, eficaz y sostenible de datos digitales en ADN

  • 27/10/2023

    Nanodevices group hosts Interfast and Sinfonia project meetings

  • 25/10/2023

    Nuevo equipamiento científico adquirido en el marco del programa Azpitek del Gobierno Vasco

  • 23/10/2023

    Da comienzo el Congreso Internacional 'Igualdad, Ciencia y Tecnología, por un cambio de paradigma'

  • CIC nanoGUNE
  • Tolosa Hiribidea, 76
  • E-20018 Donostia / San Sebastian
  • +34 943 574 000 · nano@nanogune.eu
  • Facebook Twitter Youtube Linkedin Instagram Subscribe to our Newsletter

Menú pie principal

  • nanoGUNE
  • Investigación
  • Transferencia
  • Formación
  • Sociedad
  • nanoPeople

Menú pie servicios

  • Servicios externos
  • Publicaciones
  • Seminarios
  • Únete
  • Sala de prensa
  • Perfil del contratante
  • Corporate Compliance

Menú pie grupos

  • Nanomagnetismo
  • Nanoóptica
  • Autoensamblado
  • Nanodispositivos

Menú pie grupos 2

  • Microscopía Electrónica
  • Teoría
  • Nanomateriales
  • Nanoimagen
  • Nanoingeniería

Funded by

  • EJ/GV
  • Diputación
  • FEDER
  • FEDER
  • Ministerio de Ciencia e Innovación

Member of

  • BRTA
  • SOMM

Distinctions

  • Distinción de Excelencia María de Maeztu 2022-2025
  • Excellence Research
  • UNE-166002

Menú legales

  • Accesibilidad
  • Aviso Legal
  • Política de privacidad
  • Política de cookies
  • Política de confidencialidad
by ACC