Related news by tag 2D materials

El grupo de Nanodispositivos participa en el proyecto Fet Open 2D-INK de la UE

El grupo de Nanodispositivos de nanoGUNE es uno de los nueve socios del proyecto. Contribuirá con la fabricación y testeo de transistores con la tinta semiconductora aportada por otros colaboradores del consorcio. NanoGUNE se encargará también de la miniaturización de los dispositivos, teniendo en mente posibles aplicaciones electrónicas, como la electrónica portable. Para ello, recibirá 297.600€ para un periodo de 3 años.

La empresa Graphenea, creada en 2010 por nanoGUNE junto a un grupo de inversores privados, también participará en el proyecto. El equipo de investigación colaborativo se completará con seis socios europeos más: Centro Algoritmi de la Universidade do Minho (Braga, Portugal); el instituto ICMol de la Universitat de Valencia; la Technische Universität München (Munich, Alemania); la Katholieke Universiteit Leuven (Lovaina, Belgica); la Universität Wien (Viena, Austria); y University of Nottingham (Reino Unido).

Los proyectos FET-OPEN (Future and Emerging Technologies) de la Unión Europea apoyan líneas de investigación en fases iniciales, líneas basadas en ideas sobre las que puedan surgir nuevas tecnologías. Así, la iniciativa de la UE anima a científicos e ingenieros de múltiples disciplinas a cooperar en proyectos de investigación que promuevan avances científicos. Es destacable, también, que el programa europeo FET-OPEN (Future and Emerging Technologies) es una convocatoria muy competitiva, pues de los 643 proyectos presentados solo 24 han sido financiados (3,7%) en toda Europa.

Patentes

El desarrollo de tintas semiconductoras a partir de materiales bidimensionales con diferentes propiedades representará, según el coordinador del proyecto Aurelio Mateo-Alonso, “un importante avance en el campo de nuevos materiales para la próxima generación de aparatos electrónicos ultrafinos, como transistores, LEDs, células solares, fotodetectores…”. Los investigadores auguran, además, la presentación de patentes, dadas las posibilidades tecnológicas de 2D-INK y de la participación de una empresa privada.

Investigadores vascos ponen la luz “patas arriba”

Ilustración de ondas propagándose desde una fuente puntual. Izquierda: Propagación normal de ondas en una superficie. Derecha: Propagación inusual de ondas en una metasuperficie hiperbólica (P. Li, CIC nanoGUNE)

Las ondas ópticas que se propagan desde una fuente puntual normalmente exhiben frentes de onda circulares. “Como las ondas en una superficie de agua cuando se arroja una piedra”, explica Peining Li, investigador postdoctoral en nanoGUNE y primer autor del artículo. La razón de esta propagación circular es que el medio a través del cual viaja la luz es típicamente homogéneo e isótropo, es decir, uniforme en todas las direcciones.

Los científicos ya habían predicho teóricamente que determinadas superficies estructuradas pueden poner la luz “patas arriba” cuando se propaga a lo largo de ellas. “En estas superficies, conocidas como 'metasuperficies hiperbólicas', las ondas emitidas por una fuente puntual viajan sólo en determinadas direcciones y además, con frentes de onda abiertos (cóncavos)”, explica Javier Alfaro, estudiante de doctorado en nanoGUNE y coautor del artículo. Debido a su propagación direccional y a que su longitud de onda es mucho más pequeña que la de la luz en el espacio libre o en fibras ópticas, estas ondas podrían ayudar a miniaturizar los dispositivos ópticos para la detección y el procesamiento de señales.

Ahora, los investigadores han desarrollado una metasuperficie para la luz infrarroja. Esta metasuperficie está hecha de nitruro de boro, un material bidimensional similar al grafeno, que posee una extraordinaria capacidad para manipular la luz infrarroja a escalas extremadamente pequeñas. Esta propiedad puede ser empleada para el desarrollo de sensores químicos miniaturizados o para el control de la transmisión de calor en nanodispositivos. Por otro lado, han logrado observar por primera vez frentes de onda cóncavos en el infrarrojo gracias a un microscopio óptico muy especial.

La fabricación de metasuperficies hiperbólicas es compleja ya que requiere de una estructuración extremadamente precisa de dimensiones nanométricas. Irene Dolado, estudiante de doctorado en nanoGUNE, y Saül Velez, ex investigador postdoctoral en nanoGUNE (ahora en ETH Zürich), han superado este reto utilizando técnicas avanzadas como la litografía por haz de electrones y el grabado en pequeñas láminas de nitruro de boro de alta calidad proporcionado por la Universidad Estatal de Kansas. “Después de varias optimizaciones, hemos logrado la precisión requerida y hemos obtenido una rejilla con un espaciado tan pequeño como 25 nm“, apunta Irene Dolado. “Los mismos métodos de fabricación también se pueden aplicar a otros materiales y podrían utilizarse para realizar metasuperficies artificiales con propiedades ópticas a medida”, añade Saül Vélez.

De la teoría a la realidad 

Para observar cómo se propagan las ondas en la metasuperficie, los investigadores han usado una técnica de nanoimagen infrarroja de vanguardia que ha sido desarrollada por el propio grupo de Nanoóptica de nanoGUNE. Primero colocaron una nanoantena de oro sobre la metasuperficie. “De este modo, la nanoantena genera ondas de la misma manera que lo hace una piedra cuando la tiramos al agua”, comenta Peining Li. La nanoantena concentra la luz infrarroja incidente en un pequeño foco que lanza las ondas que se propagan sobre la metasuperficie. Los investigadores tomaron las imágenes de las ondas utilizando un microscopio óptico de barrido de campo cercano (s-SNOM). “Fue increíble ver las imágenes. Mostraban la curvatura cóncava de los frentes de onda que se propagaban desde la nanoantena de oro, exactamente tal y como predice la teoría”, dice Rainer Hillenbrand, investigador Ikerbasque en nanoGUNE, quien ha dirigido la investigación.

Estos prometedores resultados abren la puerta a la utilización de otros exóticos materiales bidimensionales como plataforma para realizar nanocircuitos y metasuperficies hiperbólicas. Además, demuestran que la microscopía de campo cercano puede emplearse para revelar fenómenos ópticos en materiales anisótropos y en metasuperficies.

La investigación ha sido financiada principalmente por subvenciones individuales de las acciones Marie Sklodowsca-Curie de la Unión Europea y los programas de becas de investigación predoctoral del Gobierno Vasco y el Gobierno Español, así como de la Nacional Science Foundation americana, y se ha llevado a cabo en consonancia con los proyectos de nanoGUNE dentro de la iniciativa europea Graphene Flagship.

nanoGUNE se alía con BerriUp y Graphenea para lanzar el Global Graphene Call

CIC nanoGUNE, BerriUP —aceleradora de startups en Donostia— y Graphenea —primera startup de nanoGUNE dedicada a la producción y comercialización de grafeno— hemos firmado un convenio de colaboración para impulsar propuestas relacionadas con la investigación en grafeno. Para ello, lanzamos, por primera vez, la convocatoria denominada Global Graphene Call con el fin de desarrollar ideas empresariales relacionadas con el grafeno.

Los participantes deberán presentar proyectos propios y legítimos, y para participar será necesario registrar el proyecto de forma completa en el formulario habilitado al efecto. El plazo para enviar los proyectos comienza el 24 de febrero de 2020 y finaliza el 12 de abril 2020, ambos inclusive.

Los finalistas seleccionados podrán disfrutar de un programa de aceleración personalizado en la sede de BerriUp entre junio y agosto 2020, así como disponer del material de Graphenea y hacer uso de equipamiento científico de nanoGUNE.

 

Suscribirse a