Microsite es: . Grupo:
You are here

Projects at a glance

InfeMec- Nanomechanics of proteins involved in viral and bacterial infections

We will use bioinformatics and high-throughout screening techniques to identify molecules that alter the nanomecanichs of anchoring proteins and that can potentially be used to prevent infections.

MAGNETOP - Probing the effect of Time Reversal Symmetry breaking by the application of a local magnetic field in topological insulators

The Magnetop project aims at providing a complete (local and non-local) picture of the electronic-transport and electronic-structure characteristics of topological insulators as well as to provide means to manipulate and confine their exotic topological states.

ANTOMIC - Quantum nanoantennas for atomic-scale optical spectroscopy

The ANTOMIC project (Quantum nanoantennas for atomic-scale optical spectroscopy) studies the quantum limits of light emission and scattering by metallic and molecular nanowires of nanometer sizes. We will identify their plasmon resonances and correlate them with their quantized electronic structure.

ElectronStopping - Electronic stopping power from first principles

The Electronstopping project is focused on the creation of a flexible and general method that will make possible to accurately calculate and analyze the electronic stopping power in a large variety of materials.

SPINOGRAPH - Spintronics in Graphene

SPINOGRAPH is a Marie-Curie Initial-Training Network on "Spintronics in Graphene", bringing together 7 academic and 2 industrial partners to train 15 young researchers doing top-class research projects. Spintronics stands for electronics based on the electron-spin degree of freedom. The huge success of spintronics in metals, which started from the pioneering discovery of Giant Magnetoresistance (GMR), has revolutionized the magnetoelectronics industry. Exploration of spin effects in other types of materials is leading to an array of fascinating physical phenomena and holds the promise of future breakthroughs. The discovery of graphene, the first truly two-dimensional crystal, together with the remarkable progress in the fabrication of graphene devices, have naturally led to the exploration of hybrid graphene/ferromagnetic devices to explore spintronics in graphene.

THINFACE - Thin-film Hybrid Interfaces: a training initiative for the design of next-generation energy devices

The main concern of the THINFACE project is to push forward new ideas and techniques within the field of hybrid thin films for new energy devices. The approach focuses on sustainable energy solutions and by this meeting one of our most challenging societal issues. To solve these challenges in a multi-disciplinary and intersectorial network gives outstanding possibilities for the young researchers involved.

ARTEN - Artificial Enzymes: Protein-Encapsulated Inorganic Nanoparticles

The ARTEN project aims at gaining knowledge on enzyme-analogue catalytic reactions with various inorganics as well as approaching application fields of such composite inorganic enzymes.

Pages

x
Cookie-ak erabiltzen ditugu gure zerbitzuak eta nabigazio esperientzia hobetzeko.
Nabigatzen jarraitzen baduzu, ulertuko dugu horien erabilera onartzen duzula. Zure baimena atzera bota edo informazio gehiago nahi baduzu, kontsultatu gure Cookie Politika.