Skip to main content
CIC nanoGUNE
  • en
  • es
  • eu

User account menu

  • Log in

Main Menu ES

  • nanoGUNE
    • At a Glance
    • Organization & Funding
    • People
    • Join us
    • Life
    • Newsroom
    • nanoPeople
  • Research
    • Research
    • Publications
    • Projects
    • External services
  • TechTransfer
    • TechTransfer
    • Start-ups
    • IP Portfolio
    • Industry collaborative research positions
    • Strategic lines
    • External services
    • News & events
  • Training
    • Master projects
    • Bachelor Final Projects
    • Summer Internships
    • Education University PHD
  • Society

User menu

  • Log in
  1. Home
  2. Projects
  3. SGPCM- Switching grapheme-plasmon with phase-change materials

SGPCM- Switching grapheme-plasmon with phase-change materials

Funding Program
EU - Horizon 2020
MSCA - Individual Fellowship
Coordinator
CIC nanoGUNE - Spain
Call
H2020-MSCA-IF-2015
Project ID
705960
PI at nanoGUNE
Peining Li (p.li@nanogune.eu)- Rainer Hillenbrand (r.hillenbrand@nanogune.eu)
From
01/01/2017
To
31/12/2018
Total funding
170 121,60€
Web
https://cordis.europa.eu/project/rcn/201382_en.html
Research group
Nanooptics

Graphene plasmons (GPs), is enable the transport and control of light on an extreme subwavelength scale as well as the dynamic tunability via electric-gate voltage, which can be exploited for numerous applications such as for strong light-matter interactions, tunable infrared biosensing and absorption spectroscopy, subwavelength optical imaging, as well as for the development of tunable transformation optics devices, metamaterials and metasurfaces.

Graphene plasmons (GPs), is enable the transport and control of light on an extreme subwavelength scale as well as the dynamic tunability via electric-gate voltage, which can be exploited for numerous applications such as for strong light-matter interactions, tunable infrared biosensing and absorption spectroscopy, subwavelength optical imaging, as well as for the development of tunable transformation optics devices, metamaterials and metasurfaces. However, electric GP tuning still has the limitations that could hinder potential applications. First, the electric-gate tuning of GPs is a volatile method, i.e. the tuned states of GPs cannot be kept without the applied bias. Consequently, GP electro-optic devices like plasmonic switches cannot provide the storable ‘on-’ and ‘off-’ states for low-energy-consuming signal control and processing. Second, the electric-gate tuning is usually slow, which cannot switch or modulate the GPs in an ultrafast time scale. In this proposal, we want to demonstrate that switchable phase change materials can offer a simple way to circumvent those two limitations and provide GPs with non-volatile, ultrafast and all-optical switching functionalities. These new functionalities would significantly enhance the application potential of GPs in the fields of optical sensing, all-optical plasmonic signal processing including modulation, switching and computing, and memory and digital metasurface and metamaterials.

Partners

CIC nanoGUNE - Spain

Keywords
Graphene plasmon
  • whatsapp
  • facebook
  • twitter
  • linkedin
  • print

By funding program

  • - Any -
  • ERA.NET
  • EU - FP7
  • European Commission
  • EU - Horizon Europe
  • EU - Horizon 2020
  • FET Open
  • Initial Training Network (ITN)
  • MSCA - Individual Fellowship
  • Spanish Government
  • CIC nanoGUNE
  • Tolosa Hiribidea, 76
  • E-20018 Donostia / San Sebastian
  • +34 943 574 000 · nano@nanogune.eu
  • Facebook Twitter Youtube Linkedin Instagram Subscribe to our Newsletter

Menú pie principal

  • nanoGUNE
  • Research
  • TechTransfer
  • Training
  • Society
  • nanoPeople

Menú pie servicios

  • External services
  • Publications
  • Seminars
  • Join us
  • Newsroom
  • Contractor profile
  • Corporate Compliance

Menú pie grupos

  • Nanomagnetism
  • Nanooptics
  • Self Assembly
  • Nanobiosystems
  • Nanodevices
  • Electron Microscopy

Menú pie grupos 2

  • Theory
  • Nanomaterials
  • Quantum-Probe Microscopy
  • Nanoengineering
  • Quantum Hardware

Funded by

  • EJ/GV
  • Diputación
  • FEDER
  • FEDER
  • Ministerio de Ciencia e Innovación

Member of

  • BRTA
  • SOMM

Distinctions

  • Distinción de Excelencia María de Maeztu 2022-2025
  • Excellence Research
  • UNE-166002

Menú legales

  • Accesibility
  • Legal notice
  • Privacy policy
  • Cookies policy
  • Confidentiality policy
by ACC