Skip to main content
CIC nanoGUNE
  • en
  • es
  • eu

User account menu

  • Log in

Main Menu ES

  • nanoGUNE
    • At a Glance
    • Organization & Funding
    • People
    • Join us
    • Life
    • Newsroom
    • nanoPeople
  • Research
    • Research
    • Publications
    • Projects
    • External services
  • TechTransfer
    • TechTransfer
    • Start-ups
    • IP Portfolio
    • Industry collaborative research positions
    • Strategic lines
    • External services
    • News & events
  • Training
    • Master projects
    • Bachelor Final Projects
    • Summer Internships
    • Education University PHD
  • Society

User menu

  • Log in
  1. Home
  2. Projects
  3. ANTHEM - Advanced Hybrid Thermoelectric Materials through Vapor Phase Infiltration

ANTHEM - Advanced Hybrid Thermoelectric Materials through Vapor Phase Infiltration

Funding Program
EU - Horizon 2020
MSCA - Individual Fellowship
Call
H2020-MSCA-IF-2017
Project ID
798891
PI at nanoGUNE
Jaime Willadean DuMont (Supervisor: Mato Knez)
From
01/03/2019
To
28/02/2021
Total funding
170,121.60€
Web
https://cordis.europa.eu/project/id/798891
Research group
Nanomaterials

Waste heat—the rejected by-product of all energy conversion processes—remains a huge and unexplored reservoir of green energy. It is estimated that two-thirds of the 160 TWh required for global power consumption is lost to the environment each year. Converting even a fraction of this wasted energy into electricity at the cost of 10 cents per kWh would generate a new EUR 1.0 trillion industry—creating jobs, boosting the economy, and increasing energy efficiency. A scalable preparative strategy towards inexpensive thermoelectric (TE) materials would allow direct heat to electricity conversion to be widely implemented. Realizing this ambition will require a new approach, as current methods rely on rare, toxic, and expensive materials to produce rigid and inefficient TE devices. To overcome these shortcomings, the ANTHEM project aims to develop a robust strategy towards advanced hybrid organic-inorganic TE materials through the novel concept of vapor phase infiltration (VPI). VPI presents a truly novel strategy to fuse state-of-the-art organic-inorganic TE materials at the nanoscale—opening the possibility for flexible, low cost and even transparent TE materials. Moreover, VPI is an easily scalable vapor-phase process that could extend to a large variety of inorganic/polymer combinations. In this project specific targets will include optimizing the degree of control in scattering engineering, size/ interface composition and spatial distribution of the inorganic phase, key factors for maximizing thermoelectric performance. With an optimal blend of expertise in materials chemistry, characterization and theory from leading European research groups, ANTHEM will deliver a roadmap towards low-cost and abundant hybrid TE materials that incorporate metal oxides, sulfides, or selenides. The success this project has great potential to advance not only the field of VPI, but hybrid TE too—creating concrete possibilities for the critically important waste-to-energy industry.

Keywords
tolerogenic
vaccine
treatment
  • whatsapp
  • facebook
  • twitter
  • linkedin
  • print

By funding program

  • - Any -
  • ERA.NET
  • EU - FP7
  • European Commission
  • EU - Horizon Europe
  • EU - Horizon 2020
  • FET Open
  • Initial Training Network (ITN)
  • MSCA - Individual Fellowship
  • Spanish Government
  • CIC nanoGUNE
  • Tolosa Hiribidea, 76
  • E-20018 Donostia / San Sebastian
  • +34 943 574 000 · nano@nanogune.eu
  • Facebook Twitter Youtube Linkedin Instagram Subscribe to our Newsletter

Menú pie principal

  • nanoGUNE
  • Research
  • TechTransfer
  • Training
  • Society
  • nanoPeople

Menú pie servicios

  • External services
  • Publications
  • Seminars
  • Join us
  • Newsroom
  • Contractor profile
  • Corporate Compliance

Menú pie grupos

  • Nanomagnetism
  • Nanooptics
  • Self Assembly
  • Nanobiosystems
  • Nanodevices
  • Electron Microscopy

Menú pie grupos 2

  • Theory
  • Nanomaterials
  • Quantum-Probe Microscopy
  • Nanoengineering
  • Quantum Hardware

Funded by

  • EJ/GV
  • Diputación
  • FEDER
  • FEDER
  • Ministerio de Ciencia e Innovación

Member of

  • BRTA
  • SOMM

Distinctions

  • Distinción de Excelencia María de Maeztu 2022-2025
  • Excellence Research
  • UNE-166002

Menú legales

  • Accesibility
  • Legal notice
  • Privacy policy
  • Cookies policy
  • Confidentiality policy
by ACC