Skip to main content
dd
CIC nanoGUNE
  • en
  • es
  • eu

User account menu

  • Log in

Main Menu ES

  • nanoGUNE
    • At a Glance
    • Organization & Funding
    • People
    • Join us
    • Life
    • Newsroom
    • nanoPeople
  • Research
    • Research
    • Publications
    • Projects
    • External services
  • TechTransfer
    • TechTransfer
    • Start-ups
    • IP Portfolio
    • Industry collaborative research positions
    • Strategic lines
    • External services
    • News & events
  • Training
    • Master projects
    • Bachelor Final Projects
    • Summer Internships
    • Education University PHD
  • Society

User menu

  • Log in
  1. Home
  2. Research
  3. Nanodevices
  4. Unprecedented spin properties revealed in new artificial materials

Unprecedented spin properties revealed in new artificial materials

10/09/2024

The Nanodevices group at CIC nanoGUNE discovers that a “magic” twist endows certain materials with emerging spintronic properties. The work published in Nature Materials opens up new avenues for the development of new devices for future electronics.

half
Image of Twist-angle-tunable spin texture in WSe2/graphene van der Waals heterostructures.

In conjunction with research staff from the Charles University of Prague and the CFM (CSIC-UPV/EHU) center in San Sebastian, CIC nanoGUNE’s Nanodevices group has designed a new complex material with emerging properties in the field of spintronics. This discovery, published in the journal Nature Materials, opens up a range of fresh possibilities for the development of novel, more efficient and more advanced electronic devices, such as those that integrate magnetic memories into processors.  

The discovery of two-dimensional materials with unique characteristics has led to a boom in research into these materials as new effects are produced when two layers of these materials are stacked to form a heterostructure. It has recently been observed that minute rotations of these layers can significantly change the properties of this heterostructure. 

“In this work we studied the stacking of two layers of graphene and tungsten selenide (WSe2),” explained Ikerbasque Research Professor Félix Casanova, co-leader of the Nanodevices group at nanoGUNE and who led this work. “If the two layers are placed one on top of the other and rotated at a precise angle, a spin current is generated in a desired specific direction,” added Félix Casanova.

Spin (one of the properties of electrons and other particles) is normally transferred in a direction perpendicular to the electric current. Handling these spin currents is one of the main limitations of spintronics, –electronics that uses spin to store, handle and transfer information–.However, “this work shows that this limitation in fact disappears when suitable materials are used,” stressed Félix Casanova.

The researcher concluded that “by simply stacking two layers and applying a ‘magic’ twist, new spin-related properties that do not exist in the initial materials can be obtained”. “The more flexibility we have in the choice of materials, the greater the design possibilities are for next-generation devices.”

For further information:

Haozhe Yang,  Beatriz Martín-García, Jozef Kimák,  Eva Schmoranzerová,  Eoin Dolan,  Zhendong Chi,  Marco Gobbi, Petr Němec,  Luis E. Hueso & Fèlix Casanova 

Twist-angle-tunable spin texture in WSe2/graphene van der Waals heterostructures. 

Nature Materials (2024)

https://doi.org/10.1038/s41563-024-01985-y

https://rdcu.be/dTvEu

Tags
spin
Graphene
  • whatsapp
  • facebook
  • twitter
  • linkedin
  • print

Related news

  • 06/05/2025

    NanoGUNE starts building the Quantum Tower

  • 01/04/2025

    Donostia, the spintronics and orbitronics capital

  • 31/03/2025

    Mariana Medina, interviewed on Radio Euskadi about “How to create microbots to help conceive a baby”

  • 14/02/2025

    Review Article Highlights 25 Years of Modern Near-field Optical Nanoimaging

  • 11/02/2025

    Scientists synthesize 2D polyaniline crystal with unique metallic out-of-plane conductivity

  • CIC nanoGUNE
  • Tolosa Hiribidea, 76
  • E-20018 Donostia / San Sebastian
  • +34 943 574 000 · nano@nanogune.eu
  • Facebook Twitter Youtube Linkedin Instagram Subscribe to our Newsletter

Menú pie principal

  • nanoGUNE
  • Research
  • TechTransfer
  • Training
  • Society
  • nanoPeople

Menú pie servicios

  • External services
  • Publications
  • Seminars
  • Join us
  • Newsroom
  • Contractor profile
  • Corporate Compliance

Menú pie grupos

  • Nanomagnetism
  • Nanooptics
  • Self Assembly
  • Nanobiosystems
  • Nanodevices
  • Electron Microscopy

Menú pie grupos 2

  • Theory
  • Nanomaterials
  • Quantum-Probe Microscopy
  • Nanoengineering
  • Quantum Hardware

Funded by

  • EJ/GV
  • Diputación
  • FEDER
  • FEDER
  • Ministerio de Ciencia e Innovación

Member of

  • BRTA
  • SOMM

Distinctions

  • Distinción de Excelencia María de Maeztu 2022-2025
  • Excellence Research
  • UNE-166002

Menú legales

  • Accesibility
  • Legal notice
  • Privacy policy
  • Cookies policy
  • Confidentiality policy
by ACC