Skip to main content
CIC nanoGUNE
  • en
  • es
  • eu

User account menu

  • Log in

Main Menu ES

  • nanoGUNE
    • At a Glance
    • Organization & Funding
    • People
    • Join us
    • Life
    • Newsroom
    • nanoPeople
  • Research
    • Research
    • Publications
    • Projects
    • External services
  • TechTransfer
    • TechTransfer
    • Start-ups
    • IP Portfolio
    • Industry collaborative research positions
    • Strategic lines
    • External services
    • News & events
  • Training
    • Master projects
    • Bachelor Final Projects
    • Summer Internships
    • Education University PHD
  • Society

User menu

  • Log in
  1. Home
  2. Projects
  3. ARTEN - Artificial Enzymes: Protein-Encapsulated Inorganic Nanoparticles

ARTEN - Artificial Enzymes: Protein-Encapsulated Inorganic Nanoparticles

Funding Program
EU - FP7
Coordinator
CIC nanoGUNE - Spain
Call
FP7-PEOPLE-2012-CIG
Project ID
322158
PI at nanoGUNE
Mato Knez ( m.knez@nanogune.eu)
From
01/09/2013
To
31/08/2017
Total funding
100 000 €
Web
cordis.europa.eu/project/id/322158
Research group
Nanomaterials
The ARTEN project aims at gaining knowledge on enzyme-analogue catalytic reactions with various inorganics as well as approaching application fields of such composite inorganic enzymes.

Enzymatic catalysis is one of the key processes for biochemical conversion in nature and of utmost importance for any form of life. The base for this kind of conversion is the enzyme itself, which is a very specialized protein targeting another molecule, peptide, or protein in a very specific way to convert it into a product with a minimum of activation energy. The latter point is very critical as it allows biochemical reactions at physiological conditions. This specialization to physiological conditions is, although beneficial for natural processes, very often a drawback for technological processes.

Enzymes, being proteins, in most cases cannot resist serious deviations in temperature or pH values and degrade. This operating window of the enzymes limits their flexibility for ex-vivo application in technical synthesis, food processing, etc., seriously.

Inorganic nanoparticles (NPs) are considered to be a very promising alternative to enzymes as they might increase the operating window for the catalytic reaction. The research direction resembles a sort of molecular biomimetics, since inorganic phases are supposed to mimic biomaterials (enzymes) in their function. Few examples of enzyme-mimicking inorganic nanoparticles have been investigated until now, with the most prominent particles consisting of Fe3O4, CeO2, or Pt. This project aims to go far beyond the current state of the art. With protein-encapsulated inorganic nanoparticles, the goal is, on the one hand, to gain knowledge on enzyme-analogue catalytic reactions with various inorganics and, on the other hand, to approach application fields of such composite inorganic enzymes by controlled modification of the protein shell they are embedded in.

Check the results of the project in brief at CORDIS: "Nanoparticles act as enzymes"

 

Partners

CIC nanoGUNE - Spain

  • whatsapp
  • facebook
  • twitter
  • linkedin
  • print

By funding program

  • - Any -
  • ERA.NET
  • EU - FP7
  • European Commission
  • EU - Horizon Europe
  • EU - Horizon 2020
  • FET Open
  • Initial Training Network (ITN)
  • MSCA - Individual Fellowship
  • Spanish Government
  • CIC nanoGUNE
  • Tolosa Hiribidea, 76
  • E-20018 Donostia / San Sebastian
  • +34 943 574 000 · nano@nanogune.eu
  • Facebook Twitter Youtube Linkedin Instagram Subscribe to our Newsletter

Menú pie principal

  • nanoGUNE
  • Research
  • TechTransfer
  • Training
  • Society
  • nanoPeople

Menú pie servicios

  • External services
  • Publications
  • Seminars
  • Join us
  • Newsroom
  • Contractor profile
  • Corporate Compliance

Menú pie grupos

  • Nanomagnetism
  • Nanooptics
  • Self Assembly
  • Nanobiosystems
  • Nanodevices
  • Electron Microscopy

Menú pie grupos 2

  • Theory
  • Nanomaterials
  • Quantum-Probe Microscopy
  • Nanoengineering
  • Quantum Hardware

Funded by

  • EJ/GV
  • Diputación
  • FEDER
  • FEDER
  • Ministerio de Ciencia e Innovación

Member of

  • BRTA
  • SOMM

Distinctions

  • Distinción de Excelencia María de Maeztu 2022-2025
  • Excellence Research
  • UNE-166002

Menú legales

  • Accesibility
  • Legal notice
  • Privacy policy
  • Cookies policy
  • Confidentiality policy
by ACC