Skip to main content
CIC nanoGUNE
  • en
  • es
  • eu

User account menu

  • Log in

Main Menu ES

  • nanoGUNE
    • At a Glance
    • Organization & Funding
    • People
    • Join us
    • Life
    • Newsroom
    • nanoPeople
  • Research
    • Research
    • Publications
    • Projects
    • External services
  • TechTransfer
    • TechTransfer
    • Start-ups
    • IP Portfolio
    • Industry collaborative research positions
    • Strategic lines
    • External services
    • News & events
  • Training
    • Master projects
    • Bachelor Final Projects
    • Summer Internships
    • Education University PHD
  • Society

User menu

  • Log in
  1. Home
  2. Projects
  3. ITAMOSCINOM - Injection, transport and manipulation of spin currents in new organic materials

ITAMOSCINOM - Injection, transport and manipulation of spin currents in new organic materials

Funding Program
EU - FP7
Coordinator
CIC nanoGUNE
Call
MC-IRG - International Re-integration Grants (IRG)
Project ID
256470
PI at nanoGUNE
Felix Casanova
From
01/07/2010
To
30/06/2014
Total funding
100 000 €
Contribution to nanoGUNE
100 000 €
Web
cordis.europa.eu/project/id/256470
Research group
Nanodevices
This project studies spin injection, transport, and manipulation in a variety of materials, from simple metals to organic semiconductors (OSC).

Spintronics is an area of electronics that aims to exploit the spin of the electron. Although it is one of the selected areas to play a role in the post-CMOS electronics, spintronics still must prove its full potential in many subjects. One subject that is particularly important is the long-distance spin transport and spin manipulation. For spintronic devices to be successful, i) they should transport spin for distances in excess of 100 nm and ii) they must have a lateral structure for multiterminal integration. Spin transport with these conditions have been achieved in metals and conventional semiconductors, although there is a need for materials with better spin-transport properties and spin manipulation has still to be developed in any material.

OSC, which are being integrated in mainstream electronics such as LEDs and FETs, may play an important role in the developing of organic spintronics. OSC have a very small spin-orbit coupling, which make them ideal as spin transporters. Combining conventional spintronics with OSC will allow us to open a new perspective in this field. The combination of magnetic and organic materials will allow us to understand the spin transport in carbon-based materials, to determine the potential of OSC in spintronics and to manipulate spins in non-conventional environments.

The project starts by growing and characterizing the organic materials we will study on top of ferromagnetic materials and tunnel barriers and vice versa. This allows us to obtain optimized organic vertical spin valves and study their transport properties. In parallel, we fabricate spin valves with lateral geometry using metals, pure carbon, and finally OSC. The last part of the project is dedicated to the spin manipulation, an essential condition to get advanced spintronic devices, such as a spin transistor.

Partners

NanoGUNE

  • whatsapp
  • facebook
  • twitter
  • linkedin
  • print

By funding program

  • - Any -
  • ERA.NET
  • EU - FP7
  • European Commission
  • EU - Horizon Europe
  • EU - Horizon 2020
  • FET Open
  • Initial Training Network (ITN)
  • MSCA - Individual Fellowship
  • Spanish Government
  • CIC nanoGUNE
  • Tolosa Hiribidea, 76
  • E-20018 Donostia / San Sebastian
  • +34 943 574 000 · nano@nanogune.eu
  • Facebook Twitter Youtube Linkedin Instagram Subscribe to our Newsletter

Menú pie principal

  • nanoGUNE
  • Research
  • TechTransfer
  • Training
  • Society
  • nanoPeople

Menú pie servicios

  • External services
  • Publications
  • Seminars
  • Join us
  • Newsroom
  • Contractor profile
  • Corporate Compliance

Menú pie grupos

  • Nanomagnetism
  • Nanooptics
  • Self Assembly
  • Nanobiosystems
  • Nanodevices
  • Electron Microscopy

Menú pie grupos 2

  • Theory
  • Nanomaterials
  • Quantum-Probe Microscopy
  • Nanoengineering
  • Quantum Hardware

Funded by

  • EJ/GV
  • Diputación
  • FEDER
  • FEDER
  • Ministerio de Ciencia e Innovación

Member of

  • BRTA
  • SOMM

Distinctions

  • Distinción de Excelencia María de Maeztu 2022-2025
  • Excellence Research
  • UNE-166002

Menú legales

  • Accesibility
  • Legal notice
  • Privacy policy
  • Cookies policy
  • Confidentiality policy
by ACC