Skip to main content
dd
CIC nanoGUNE
  • en
  • es
  • eu

User account menu

  • Log in

Main Menu ES

  • nanoGUNE
    • At a Glance
    • Organization & Funding
    • People
    • Join us
    • Life
    • Newsroom
    • nanoPeople
  • Research
    • Research
    • Publications
    • Projects
    • External services
  • TechTransfer
    • TechTransfer
    • Start-ups
    • IP Portfolio
    • Industry collaborative research positions
    • Strategic lines
    • External services
    • News & events
  • Training
    • Master projects
    • Bachelor Final Projects
    • Summer Internships
    • Education University PHD
  • Society

User menu

  • Log in
  1. Home
  2. SMALL: Plasmonic Nickel Nanoantennas

SMALL: Plasmonic Nickel Nanoantennas

16/06/2011

In a recent article (J.Chen at al., Small, doi: 10.1002/smll.201100640) researchers from nanoGUNE have studied the fundamental optical properties of pure nickel nanoantennas. The article has been featured on the cover of the SMALL journal (Volume 7, Issue 16) and on the materials science news site Materials Views. “This study represents a step towards understanding and engineering magnetically controllable optical nanoantennas, which will be extremely useful for many developing technologies including biosensors, lasers, and solar cells”, says Richard Walters in his article “Nickel for Visible-Light Nanoantennas?”.

As explained in the abstract, the authors have studied the fundamental optical properties of pure nickel nanostructures by far-field extinction spectroscopy and optical near-field microscopy, providing direct experimental evidence of the existence of particle plasmon resonances predicted by theory. Experimental and calculated near-field maps allow for unambiguous identification of dipolar plasmon modes. By comparing calculated near-field and far-field spectra, they find dramatic shifts between the near-field and far-field plasmon resonance, which are much stronger than in gold nanoantennas. Based on a simple damped harmonic oscillator model to describe plasmonic resonances, it is possible to explain these shifts as due to plasmon damping.

 

 

The cover shows the near-field amplitude image of dipolar plasmon modes in nickel nanodisks. Each disk exhibits two bright spots oscillating along the polarization direction of the incident light, revealing the enhanced near-field at the rims of the nickel disks. The image was recorded by a scattering-type scanning near-field microscope (s-SNOM) within a study of the optical and magnetic properties of nickel nanostructures. For more information, please read the Full Paper Plasmonic Nickel Nanoantennas

Original publication: J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Åkerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, Plasmonic Nickel Nanoantennas, Small, doi: 10.1002/smll.201100640

Contact:

Rainer Hillenbrand Nanooptics Group
CIC nanoGUNE Consolider
Tolosa Hiribidea 76 200018 Donostia – San Sebastian, Spain
r.hillenbrand@nanogune.eu
www.nanogune.eu

Tags
Plasmonics
  • whatsapp
  • facebook
  • twitter
  • linkedin
  • print

Related news

  • 07/10/2025

    Two-step excitation unlocks and steers exotic nanolight

  • 06/10/2025

    “SCALABILITY IS THE NEXT BIG CHALLENGE OF QUANTUM TECHNOLOGIES"

  • 30/09/2025

    Researchers demonstrate direction-dependent vibrational strong coupling at the nanoscale

  • 26/09/2025

    "One focus will be the translation of Nanomedicine and Quantum Technologies to the market"

  • 04/08/2025

    Best Poster Award for Yunfeng Li

  • CIC nanoGUNE
  • Tolosa Hiribidea, 76
  • E-20018 Donostia / San Sebastian
  • +34 943 574 000 · nano@nanogune.eu
  • Facebook Twitter Youtube Linkedin Instagram Subscribe to our Newsletter

Menú pie principal

  • nanoGUNE
  • Research
  • TechTransfer
  • Training
  • Society
  • nanoPeople

Menú pie servicios

  • External services
  • Publications
  • Seminars
  • Join us
  • Newsroom
  • Contractor profile
  • Corporate Compliance

Menú pie grupos

  • Nanomagnetism
  • Nanooptics
  • Self Assembly
  • Nanobiosystems
  • Nanodevices
  • Electron Microscopy

Menú pie grupos 2

  • Theory
  • Nanomaterials
  • Quantum-Probe Microscopy
  • Nanoengineering
  • Quantum Hardware

Funded by

  • EJ/GV
  • Diputación
  • FEDER
  • FEDER
  • Ministerio de Ciencia e Innovación

Member of

  • BRTA
  • SOMM

Distinctions

  • Distinción de Excelencia María de Maeztu 2022-2025
  • Excellence Research
  • UNE-166002

Menú legales

  • Accesibility
  • Legal notice
  • Privacy policy
  • Cookies policy
  • Confidentiality policy
by ACC