Projects at a Glance

  • ProteinFriction - Internal friction in protein folding, function and aggregation

    Proteins serve varied functions in organisms, folding into functional structures based on energy landscapes. Protein folding landscapes are smooth yet slightly rough due to internal interactions, termed "internal friction." Misfolding, seen in diseases like Alzheimer's, lacks evolutionary pressure, resulting in rough landscapes. Recent research confirms slower diffusion in misfolding. Exploiting this, a therapeutic approach is proposed to target misfolding diseases by increasing internal friction. The project aims to understand mechanisms of internal friction, study rough misfolding landscapes, introduce mutations, and explore chemical interventions for novel disease treatment.

  • ADVASPEC - Advanced infrared near- and far-field imaging and spectroscopy tools

    The project aims to develop advanced microscopy and spectroscopy techniques for nanoscale characterization of materials and photonic devices. We will use s-SNOM and nano-FTIR to overcome diffraction limitations, enabling high-resolution imaging and spectroscopy. The research will focus on studying infrared antenna structures, leading to the development of novel infrared sensors and spectroscopy tools.

  • SYNTOH - Synthetic Optical Holography

    Synthetic Optical Holography, has paved the way for phase imaging in a variety of wide-field techniques such as optical microscopy. In scanning optical microscopy, however, the serial fashion of image acquisition seems to challenge a direct implementation of traditional holography.
  • ARTE- Atomic Research for Topological Engineering

    The objectives of ARTE are two. The topological quantum computation (TQC) deals with the transformations related to the overall shape (“topology”) of a quantum trajectory to perform operations on data and go beyond the limitations of quantum computation. It is a revolutionary technique because it will allow quantum operations to be error free and robust while taking advantage of the radically new approaches of quantum computation, which means smaller systems, less energy dissipation, and faster processing.

  • InfeMec- Nanomechanics of proteins involved in viral and bacterial infections

    We will use bioinformatics and high-throughout screening techniques to identify molecules that alter the nanomecanichs of anchoring proteins and that can potentially be used to prevent infections.
  • E-CAM - An e-infrastructure for software, training and consultancy in simulation and modelling

    E-CAM will create, develop and sustain a European infrastructure for computational science applied to simulation and modelling of materials and of biological processes of industrial and societal importance. Building on the already significant network of 15 CECAM centres across Europe and the PRACE initiative, it will create a distributed, sustainable centre for simulation and modelling at and across the atomic, molecular and continuum scales.

  • MAGNETOP - Probing the effect of Time Reversal Symmetry breaking by the application of a local magnetic field in topological insulators

    The Magnetop project aims at providing a complete (local and non-local) picture of the electronic-transport and electronic-structure characteristics of topological insulators as well as to provide means to manipulate and confine their exotic topological states.
  • ANTOMIC - Quantum nanoantennas for atomic-scale optical spectroscopy

    The ANTOMIC project (Quantum nanoantennas for atomic-scale optical spectroscopy) studies the quantum limits of light emission and scattering by metallic and molecular nanowires of nanometer sizes. We will identify their plasmon resonances and correlate them with their quantized electronic structure.

  • ElectronStopping - Electronic stopping power from first principles

    The Electronstopping project is focused on the creation of a flexible and general method that will make possible to accurately calculate and analyze the electronic stopping power in a large variety of materials.
  • SPINOGRAPH - Spintronics in Graphene

    SPINOGRAPH is a Marie-Curie Initial-Training Network on "Spintronics in Graphene", bringing together 7 academic and 2 industrial partners to train 15 young researchers doing top-class research projects. Spintronics stands for electronics based on the electron-spin degree of freedom. The huge success of spintronics in metals, which started from the pioneering discovery of Giant Magnetoresistance (GMR), has revolutionized the magnetoelectronics industry. Exploration of spin effects in other types of materials is leading to an array of fascinating physical phenomena and holds the promise of future breakthroughs. The discovery of graphene, the first truly two-dimensional crystal, together with the remarkable progress in the fabrication of graphene devices, have naturally led to the exploration of hybrid graphene/ferromagnetic devices to explore spintronics in graphene.